fin-0.1.1: Nat and Fin: peano naturals and finite numbers
Safe Haskell None
Language Haskell2010

Data.Type.Nat.LE.ReflStep

Synopsis

Relation

fromZeroSucc :: forall n m. SNatI m => LEProof n m -> LEProof n m Source #

Convert from zero+succ to refl+step definition.

Inverse of toZeroSucc .

toZeroSucc :: SNatI n => LEProof n m -> LEProof n m Source #

Convert refl+step to zero+succ definition.

Inverse of fromZeroSucc .

Decidability

decideLE :: forall n m. ( SNatI n, SNatI m) => Dec ( LEProof n m) Source #

Find the LEProof n m , i.e. compare numbers.

Lemmas

Constructor like

leZero :: forall n. SNatI n => LEProof ' Z n Source #

\(\forall n : \mathbb{N}, 0 \le n \)

leSucc :: LEProof n m -> LEProof (' S n) (' S m) Source #

\(\forall n\, m : \mathbb{N}, n \le m \to 1 + n \le 1 + m \)

leRefl :: LEProof n n Source #

\(\forall n : \mathbb{N}, n \le n \)

leStep :: LEProof n m -> LEProof n (' S m) Source #

\(\forall n\, m : \mathbb{N}, n \le m \to n \le 1 + m \)

Partial order

leAsym :: LEProof n m -> LEProof m n -> n :~: m Source #

\(\forall n\, m : \mathbb{N}, n \le m \to m \le n \to n \equiv m \)

leTrans :: LEProof n m -> LEProof m p -> LEProof n p Source #

\(\forall n\, m\, p : \mathbb{N}, n \le m \to m \le p \to n \le p \)

Total order

leSwap :: forall n m. ( SNatI n, SNatI m) => Neg ( LEProof n m) -> LEProof (' S m) n Source #

\(\forall n\, m : \mathbb{N}, \neg (n \le m) \to 1 + m \le n \)

leSwap' :: LEProof n m -> LEProof (' S m) n -> void Source #

\(\forall n\, m : \mathbb{N}, n \le m \to \neg (1 + m \le n) \)

More

leStepL :: LEProof (' S n) m -> LEProof n m Source #

\(\forall n\, m : \mathbb{N}, 1 + n \le m \to n \le m \)

lePred :: LEProof (' S n) (' S m) -> LEProof n m Source #

\(\forall n\, m : \mathbb{N}, 1 + n \le 1 + m \to n \le m \)

proofZeroLEZero :: LEProof n ' Z -> n :~: ' Z Source #

\(\forall n\ : \mathbb{N}, n \le 0 \to n \equiv 0 \)