module Optics.Iso
(
Iso
, Iso'
, iso
, equality
, simple
, coerced
, coercedTo
, coerced1
, non
, non'
, anon
, curried
, uncurried
, flipped
, involuted
, Swapped(..)
, withIso
, au
, under
, An_Iso
)
where
import Data.Tuple
import Data.Bifunctor
import Data.Coerce
import Data.Maybe
import Data.Profunctor.Indexed
import Optics.AffineFold
import Optics.Prism
import Optics.Review
import Optics.Internal.Optic
type Iso s t a b = Optic An_Iso NoIx s t a b
type Iso' s a = Optic' An_Iso NoIx s a
iso :: (s -> a) -> (b -> t) -> Iso s t a b
iso :: (s -> a) -> (b -> t) -> Iso s t a b
iso s -> a
f b -> t
g = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) s t a b)
-> Iso s t a b
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic ((s -> a) -> (b -> t) -> p i a b -> p i s t
forall (p :: * -> * -> * -> *) a b c d i.
Profunctor p =>
(a -> b) -> (c -> d) -> p i b c -> p i a d
dimap s -> a
f b -> t
g)
{-# INLINE iso #-}
withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso Iso s t a b
o (s -> a) -> (b -> t) -> r
k = case Iso s t a b -> Optic__ (Exchange a b) Any (Curry NoIx Any) s t a b
forall (p :: * -> * -> * -> *) k (is :: IxList) s t a b i.
Profunctor p =>
Optic k is s t a b -> Optic_ k p i (Curry is i) s t a b
getOptic Iso s t a b
o ((a -> a) -> (b -> b) -> Exchange a b Any a b
forall a b i s t. (s -> a) -> (b -> t) -> Exchange a b i s t
Exchange a -> a
forall a. a -> a
id b -> b
forall a. a -> a
id) of
Exchange sa bt -> (s -> a) -> (b -> t) -> r
k s -> a
sa b -> t
bt
{-# INLINE withIso #-}
au :: Functor f => Iso s t a b -> ((b -> t) -> f s) -> f a
au :: Iso s t a b -> ((b -> t) -> f s) -> f a
au Iso s t a b
k = Iso s t a b
-> ((s -> a) -> (b -> t) -> ((b -> t) -> f s) -> f a)
-> ((b -> t) -> f s)
-> f a
forall s t a b r. Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso Iso s t a b
k (((s -> a) -> (b -> t) -> ((b -> t) -> f s) -> f a)
-> ((b -> t) -> f s) -> f a)
-> ((s -> a) -> (b -> t) -> ((b -> t) -> f s) -> f a)
-> ((b -> t) -> f s)
-> f a
forall a b. (a -> b) -> a -> b
$ \s -> a
sa b -> t
bt (b -> t) -> f s
f -> s -> a
sa (s -> a) -> f s -> f a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (b -> t) -> f s
f b -> t
bt
{-# INLINE au #-}
under :: Iso s t a b -> (t -> s) -> b -> a
under :: Iso s t a b -> (t -> s) -> b -> a
under Iso s t a b
k = Iso s t a b
-> ((s -> a) -> (b -> t) -> (t -> s) -> b -> a)
-> (t -> s)
-> b
-> a
forall s t a b r. Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso Iso s t a b
k (((s -> a) -> (b -> t) -> (t -> s) -> b -> a)
-> (t -> s) -> b -> a)
-> ((s -> a) -> (b -> t) -> (t -> s) -> b -> a)
-> (t -> s)
-> b
-> a
forall a b. (a -> b) -> a -> b
$ \s -> a
sa b -> t
bt t -> s
ts -> s -> a
sa (s -> a) -> (b -> s) -> b -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. t -> s
ts (t -> s) -> (b -> t) -> b -> s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> t
bt
{-# INLINE under #-}
equality :: (s ~ a, t ~ b) => Iso s t a b
equality :: Iso s t a b
equality = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) s t a b)
-> Iso s t a b
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic forall a. a -> a
forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) s t a b
id
{-# INLINE equality #-}
simple :: Iso' a a
simple :: Iso' a a
simple = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) a a a a)
-> Iso' a a
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic forall a. a -> a
forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) a a a a
id
{-# INLINE simple #-}
coerced :: (Coercible s a, Coercible t b) => Iso s t a b
coerced :: Iso s t a b
coerced = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) s t a b)
-> Iso s t a b
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic (p i a t -> p i s t
forall (p :: * -> * -> * -> *) a b i c.
(Profunctor p, Coercible a b) =>
p i a c -> p i b c
lcoerce' (p i a t -> p i s t) -> (p i a b -> p i a t) -> p i a b -> p i s t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p i a b -> p i a t
forall (p :: * -> * -> * -> *) a b i c.
(Profunctor p, Coercible a b) =>
p i c a -> p i c b
rcoerce')
{-# INLINE coerced #-}
coercedTo :: forall a s. Coercible s a => Iso' s a
coercedTo :: Iso' s a
coercedTo = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) s s a a)
-> Iso' s a
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic (p i a s -> p i s s
forall (p :: * -> * -> * -> *) a b i c.
(Profunctor p, Coercible a b) =>
p i a c -> p i b c
lcoerce' (p i a s -> p i s s) -> (p i a a -> p i a s) -> p i a a -> p i s s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p i a a -> p i a s
forall (p :: * -> * -> * -> *) a b i c.
(Profunctor p, Coercible a b) =>
p i c a -> p i c b
rcoerce')
{-# INLINE coercedTo #-}
coerced1
:: forall f s a. (Coercible s (f s), Coercible a (f a))
=> Iso (f s) (f a) s a
coerced1 :: Iso (f s) (f a) s a
coerced1 = (forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ An_Iso p i (Curry NoIx i) (f s) (f a) s a)
-> Iso (f s) (f a) s a
forall k (is :: IxList) s t a b.
(forall (p :: * -> * -> * -> *) i.
Profunctor p =>
Optic_ k p i (Curry is i) s t a b)
-> Optic k is s t a b
Optic (p i s (f a) -> p i (f s) (f a)
forall (p :: * -> * -> * -> *) a b i c.
(Profunctor p, Coercible a b) =>
p i a c -> p i b c
lcoerce' (p i s (f a) -> p i (f s) (f a))
-> (p i s a -> p i s (f a)) -> p i s a -> p i (f s) (f a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p i s a -> p i s (f a)
forall (p :: * -> * -> * -> *) a b i c.
(Profunctor p, Coercible a b) =>
p i c a -> p i c b
rcoerce')
{-# INLINE coerced1 #-}
non :: Eq a => a -> Iso' (Maybe a) a
non :: a -> Iso' (Maybe a) a
non = Prism' a () -> Iso' (Maybe a) a
forall a. Prism' a () -> Iso' (Maybe a) a
non' (Prism' a () -> Iso' (Maybe a) a)
-> (a -> Prism' a ()) -> a -> Iso' (Maybe a) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Prism' a ()
forall a. Eq a => a -> Prism' a ()
only
{-# INLINE non #-}
non' :: Prism' a () -> Iso' (Maybe a) a
non' :: Prism' a () -> Iso' (Maybe a) a
non' Prism' a ()
p = (Maybe a -> a) -> (a -> Maybe a) -> Iso' (Maybe a) a
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (a -> Maybe a -> a
forall a. a -> Maybe a -> a
fromMaybe a
def) a -> Maybe a
go where
def :: a
def = Prism' a () -> () -> a
forall k (is :: IxList) t b.
Is k A_Review =>
Optic' k is t b -> b -> t
review Prism' a ()
p ()
go :: a -> Maybe a
go a
b | Prism' a ()
p Prism' a () -> a -> Bool
forall k (is :: IxList) s a.
Is k An_AffineFold =>
Optic' k is s a -> s -> Bool
`isn't` a
b = a -> Maybe a
forall a. a -> Maybe a
Just a
b
| Bool
otherwise = Maybe a
forall a. Maybe a
Nothing
{-# INLINE non' #-}
anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
anon a
a = Prism' a () -> Iso' (Maybe a) a
forall a. Prism' a () -> Iso' (Maybe a) a
non' (Prism' a () -> Iso' (Maybe a) a)
-> ((a -> Bool) -> Prism' a ()) -> (a -> Bool) -> Iso' (Maybe a) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a -> Bool) -> Prism' a ()
forall a. a -> (a -> Bool) -> Prism' a ()
nearly a
a
{-# INLINE anon #-}
curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
curried = (((a, b) -> c) -> a -> b -> c)
-> ((d -> e -> f) -> (d, e) -> f)
-> Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso ((a, b) -> c) -> a -> b -> c
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (d -> e -> f) -> (d, e) -> f
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry
{-# INLINE curried #-}
uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
uncurried = ((a -> b -> c) -> (a, b) -> c)
-> (((d, e) -> f) -> d -> e -> f)
-> Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (a -> b -> c) -> (a, b) -> c
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry ((d, e) -> f) -> d -> e -> f
forall a b c. ((a, b) -> c) -> a -> b -> c
curry
{-# INLINE uncurried #-}
flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
flipped = ((a -> b -> c) -> b -> a -> c)
-> ((b' -> a' -> c') -> a' -> b' -> c')
-> Iso
(a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (a -> b -> c) -> b -> a -> c
forall a b c. (a -> b -> c) -> b -> a -> c
flip (b' -> a' -> c') -> a' -> b' -> c'
forall a b c. (a -> b -> c) -> b -> a -> c
flip
{-# INLINE flipped #-}
involuted :: (a -> a) -> Iso' a a
involuted :: (a -> a) -> Iso' a a
involuted a -> a
a = (a -> a) -> (a -> a) -> Iso' a a
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso a -> a
a a -> a
a
{-# INLINE involuted #-}
class Bifunctor p => Swapped p where
swapped :: Iso (p a b) (p c d) (p b a) (p d c)
instance Swapped (,) where
swapped :: Iso (a, b) (c, d) (b, a) (d, c)
swapped = ((a, b) -> (b, a))
-> ((d, c) -> (c, d)) -> Iso (a, b) (c, d) (b, a) (d, c)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (a, b) -> (b, a)
forall a b. (a, b) -> (b, a)
swap (d, c) -> (c, d)
forall a b. (a, b) -> (b, a)
swap
{-# INLINE swapped #-}
instance Swapped Either where
swapped :: Iso (Either a b) (Either c d) (Either b a) (Either d c)
swapped = (Either a b -> Either b a)
-> (Either d c -> Either c d)
-> Iso (Either a b) (Either c d) (Either b a) (Either d c)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso ((a -> Either b a) -> (b -> Either b a) -> Either a b -> Either b a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either a -> Either b a
forall a b. b -> Either a b
Right b -> Either b a
forall a b. a -> Either a b
Left) ((d -> Either c d) -> (c -> Either c d) -> Either d c -> Either c d
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either d -> Either c d
forall a b. b -> Either a b
Right c -> Either c d
forall a b. a -> Either a b
Left)
{-# INLINE swapped #-}