{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -Wall #-}
module Data.Boolean.Overload
( module Data.Boolean,
(&&), (||), not,
ifThenElse,
(==), (/=),
(<), (>), (<=), (>=),
min, max
) where
import Data.Boolean
import Prelude hiding
( (&&), (||), not,
(==), (/=),
(<), (>), (<=), (>=),
min, max
#if MIN_VERSION_base(4,8,0)
, (<*)
#endif
)
infix 4 ==, /=, <, <=, >=, >
infixr 3 &&
infixr 2 ||
(&&) :: Boolean a => a -> a -> a
&& :: a -> a -> a
(&&) = a -> a -> a
forall b. Boolean b => b -> b -> b
(&&*)
(||) :: Boolean a => a -> a -> a
|| :: a -> a -> a
(||) = a -> a -> a
forall b. Boolean b => b -> b -> b
(||*)
not :: Boolean a => a -> a
not :: a -> a
not = a -> a
forall b. Boolean b => b -> b
notB
ifThenElse :: IfB a => BooleanOf a -> a -> a -> a
ifThenElse :: BooleanOf a -> a -> a -> a
ifThenElse = BooleanOf a -> a -> a -> a
forall a bool. (IfB a, bool ~ BooleanOf a) => bool -> a -> a -> a
ifB
(==) :: EqB a => a -> a -> BooleanOf a
== :: a -> a -> BooleanOf a
(==) = a -> a -> BooleanOf a
forall a bool. (EqB a, bool ~ BooleanOf a) => a -> a -> bool
(==*)
(/=) :: EqB a => a -> a -> BooleanOf a
/= :: a -> a -> BooleanOf a
(/=) = a -> a -> BooleanOf a
forall a bool. (EqB a, bool ~ BooleanOf a) => a -> a -> bool
(/=*)
(<) :: OrdB a => a -> a -> BooleanOf a
< :: a -> a -> BooleanOf a
(<) = a -> a -> BooleanOf a
forall a bool. (OrdB a, bool ~ BooleanOf a) => a -> a -> bool
(<*)
(>) :: OrdB a => a -> a -> BooleanOf a
> :: a -> a -> BooleanOf a
(>) = a -> a -> BooleanOf a
forall a bool. (OrdB a, bool ~ BooleanOf a) => a -> a -> bool
(>*)
(<=) :: OrdB a => a -> a -> BooleanOf a
<= :: a -> a -> BooleanOf a
(<=) = a -> a -> BooleanOf a
forall a bool. (OrdB a, bool ~ BooleanOf a) => a -> a -> bool
(<=*)
(>=) :: OrdB a => a -> a -> BooleanOf a
>= :: a -> a -> BooleanOf a
(>=) = a -> a -> BooleanOf a
forall a bool. (OrdB a, bool ~ BooleanOf a) => a -> a -> bool
(>=*)
min :: (IfB a, OrdB a) => a -> a -> a
min :: a -> a -> a
min = a -> a -> a
forall a. (IfB a, OrdB a) => a -> a -> a
minB
max :: (IfB a, OrdB a) => a -> a -> a
max :: a -> a -> a
max = a -> a -> a
forall a. (IfB a, OrdB a) => a -> a -> a
maxB