{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Cardano.Crypto.KES.CompactSum (
CompactSumKES
, VerKeyKES (..)
, SignKeyKES (..)
, SigKES (..)
, CompactSum0KES
, CompactSum1KES
, CompactSum2KES
, CompactSum3KES
, CompactSum4KES
, CompactSum5KES
, CompactSum6KES
, CompactSum7KES
) where
import Data.Proxy (Proxy(..))
import Data.Typeable (Typeable)
import GHC.Generics (Generic)
import qualified Data.ByteString as BS
import Control.Monad (guard)
import NoThunks.Class (NoThunks)
import Cardano.Binary (FromCBOR (..), ToCBOR (..))
import Cardano.Crypto.Seed
import Cardano.Crypto.Util
import Cardano.Crypto.Hash.Class
import Cardano.Crypto.KES.Class
import Cardano.Crypto.KES.CompactSingle (CompactSingleKES)
import Control.DeepSeq (NFData)
type CompactSum0KES d = CompactSingleKES d
type CompactSum1KES d h = CompactSumKES h (CompactSum0KES d)
type CompactSum2KES d h = CompactSumKES h (CompactSum1KES d h)
type CompactSum3KES d h = CompactSumKES h (CompactSum2KES d h)
type CompactSum4KES d h = CompactSumKES h (CompactSum3KES d h)
type CompactSum5KES d h = CompactSumKES h (CompactSum4KES d h)
type CompactSum6KES d h = CompactSumKES h (CompactSum5KES d h)
type CompactSum7KES d h = CompactSumKES h (CompactSum6KES d h)
data CompactSumKES h d
instance (NFData (SigKES d), NFData (VerKeyKES d)) =>
NFData (SigKES (CompactSumKES h d)) where
instance (NFData (SignKeyKES d), NFData (VerKeyKES d)) =>
NFData (SignKeyKES (CompactSumKES h d)) where
instance (OptimizedKESAlgorithm d, HashAlgorithm h, Typeable d)
=> KESAlgorithm (CompactSumKES h d) where
type SeedSizeKES (CompactSumKES h d) = SeedSizeKES d
newtype VerKeyKES (CompactSumKES h d) =
VerKeyCompactSumKES (Hash h (VerKeyKES d, VerKeyKES d))
deriving (forall x.
VerKeyKES (CompactSumKES h d)
-> Rep (VerKeyKES (CompactSumKES h d)) x)
-> (forall x.
Rep (VerKeyKES (CompactSumKES h d)) x
-> VerKeyKES (CompactSumKES h d))
-> Generic (VerKeyKES (CompactSumKES h d))
forall x.
Rep (VerKeyKES (CompactSumKES h d)) x
-> VerKeyKES (CompactSumKES h d)
forall x.
VerKeyKES (CompactSumKES h d)
-> Rep (VerKeyKES (CompactSumKES h d)) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall h d x.
Rep (VerKeyKES (CompactSumKES h d)) x
-> VerKeyKES (CompactSumKES h d)
forall h d x.
VerKeyKES (CompactSumKES h d)
-> Rep (VerKeyKES (CompactSumKES h d)) x
$cto :: forall h d x.
Rep (VerKeyKES (CompactSumKES h d)) x
-> VerKeyKES (CompactSumKES h d)
$cfrom :: forall h d x.
VerKeyKES (CompactSumKES h d)
-> Rep (VerKeyKES (CompactSumKES h d)) x
Generic
deriving newtype VerKeyKES (CompactSumKES h d) -> ()
(VerKeyKES (CompactSumKES h d) -> ())
-> NFData (VerKeyKES (CompactSumKES h d))
forall a. (a -> ()) -> NFData a
forall h d. VerKeyKES (CompactSumKES h d) -> ()
rnf :: VerKeyKES (CompactSumKES h d) -> ()
$crnf :: forall h d. VerKeyKES (CompactSumKES h d) -> ()
NFData
data SignKeyKES (CompactSumKES h d) =
SignKeyCompactSumKES !(SignKeyKES d)
!Seed
!(VerKeyKES d)
!(VerKeyKES d)
deriving (forall x.
SignKeyKES (CompactSumKES h d)
-> Rep (SignKeyKES (CompactSumKES h d)) x)
-> (forall x.
Rep (SignKeyKES (CompactSumKES h d)) x
-> SignKeyKES (CompactSumKES h d))
-> Generic (SignKeyKES (CompactSumKES h d))
forall x.
Rep (SignKeyKES (CompactSumKES h d)) x
-> SignKeyKES (CompactSumKES h d)
forall x.
SignKeyKES (CompactSumKES h d)
-> Rep (SignKeyKES (CompactSumKES h d)) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall h d x.
Rep (SignKeyKES (CompactSumKES h d)) x
-> SignKeyKES (CompactSumKES h d)
forall h d x.
SignKeyKES (CompactSumKES h d)
-> Rep (SignKeyKES (CompactSumKES h d)) x
$cto :: forall h d x.
Rep (SignKeyKES (CompactSumKES h d)) x
-> SignKeyKES (CompactSumKES h d)
$cfrom :: forall h d x.
SignKeyKES (CompactSumKES h d)
-> Rep (SignKeyKES (CompactSumKES h d)) x
Generic
data SigKES (CompactSumKES h d) =
SigCompactSumKES !(SigKES d)
!(VerKeyKES d)
deriving (forall x.
SigKES (CompactSumKES h d) -> Rep (SigKES (CompactSumKES h d)) x)
-> (forall x.
Rep (SigKES (CompactSumKES h d)) x -> SigKES (CompactSumKES h d))
-> Generic (SigKES (CompactSumKES h d))
forall x.
Rep (SigKES (CompactSumKES h d)) x -> SigKES (CompactSumKES h d)
forall x.
SigKES (CompactSumKES h d) -> Rep (SigKES (CompactSumKES h d)) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall h d x.
Rep (SigKES (CompactSumKES h d)) x -> SigKES (CompactSumKES h d)
forall h d x.
SigKES (CompactSumKES h d) -> Rep (SigKES (CompactSumKES h d)) x
$cto :: forall h d x.
Rep (SigKES (CompactSumKES h d)) x -> SigKES (CompactSumKES h d)
$cfrom :: forall h d x.
SigKES (CompactSumKES h d) -> Rep (SigKES (CompactSumKES h d)) x
Generic
algorithmNameKES :: proxy (CompactSumKES h d) -> String
algorithmNameKES proxy (CompactSumKES h d)
_ = String -> String
mungeName (Proxy d -> String
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> String
algorithmNameKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d))
deriveVerKeyKES :: SignKeyKES (CompactSumKES h d) -> VerKeyKES (CompactSumKES h d)
deriveVerKeyKES (SignKeyCompactSumKES _ _ vk_0 vk_1) =
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES ((VerKeyKES d, VerKeyKES d) -> Hash h (VerKeyKES d, VerKeyKES d)
forall d h.
(KESAlgorithm d, HashAlgorithm h) =>
(VerKeyKES d, VerKeyKES d) -> Hash h (VerKeyKES d, VerKeyKES d)
hashPairOfVKeys (VerKeyKES d
vk_0, VerKeyKES d
vk_1))
hashVerKeyKES :: VerKeyKES (CompactSumKES h d)
-> Hash h (VerKeyKES (CompactSumKES h d))
hashVerKeyKES (VerKeyCompactSumKES vk) = Hash h (Hash h (VerKeyKES d, VerKeyKES d))
-> Hash h (VerKeyKES (CompactSumKES h d))
forall h a b. Hash h a -> Hash h b
castHash ((Hash h (VerKeyKES d, VerKeyKES d) -> ByteString)
-> Hash h (VerKeyKES d, VerKeyKES d)
-> Hash h (Hash h (VerKeyKES d, VerKeyKES d))
forall h a. HashAlgorithm h => (a -> ByteString) -> a -> Hash h a
hashWith Hash h (VerKeyKES d, VerKeyKES d) -> ByteString
forall h a. Hash h a -> ByteString
hashToBytes Hash h (VerKeyKES d, VerKeyKES d)
vk)
type Signable (CompactSumKES h d) = Signable d
type ContextKES (CompactSumKES h d) = ContextKES d
signKES :: ContextKES (CompactSumKES h d)
-> Period
-> a
-> SignKeyKES (CompactSumKES h d)
-> SigKES (CompactSumKES h d)
signKES ContextKES (CompactSumKES h d)
ctxt Period
t a
a (SignKeyCompactSumKES sk _r_1 vk_0 vk_1) =
SigKES d -> VerKeyKES d -> SigKES (CompactSumKES h d)
forall h d. SigKES d -> VerKeyKES d -> SigKES (CompactSumKES h d)
SigCompactSumKES SigKES d
sigma VerKeyKES d
vk_other
where
(SigKES d
sigma, VerKeyKES d
vk_other)
| Period
t Period -> Period -> Bool
forall a. Ord a => a -> a -> Bool
< Period
_T = (ContextKES d -> Period -> a -> SignKeyKES d -> SigKES d
forall v a.
(KESAlgorithm v, Signable v a, HasCallStack) =>
ContextKES v -> Period -> a -> SignKeyKES v -> SigKES v
signKES ContextKES d
ContextKES (CompactSumKES h d)
ctxt Period
t a
a SignKeyKES d
sk, VerKeyKES d
vk_1)
| Bool
otherwise = (ContextKES d -> Period -> a -> SignKeyKES d -> SigKES d
forall v a.
(KESAlgorithm v, Signable v a, HasCallStack) =>
ContextKES v -> Period -> a -> SignKeyKES v -> SigKES v
signKES ContextKES d
ContextKES (CompactSumKES h d)
ctxt (Period
t Period -> Period -> Period
forall a. Num a => a -> a -> a
- Period
_T) a
a SignKeyKES d
sk, VerKeyKES d
vk_0)
_T :: Period
_T = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
totalPeriodsKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
verifyKES :: ContextKES (CompactSumKES h d)
-> VerKeyKES (CompactSumKES h d)
-> Period
-> a
-> SigKES (CompactSumKES h d)
-> Either String ()
verifyKES = ContextKES (CompactSumKES h d)
-> VerKeyKES (CompactSumKES h d)
-> Period
-> a
-> SigKES (CompactSumKES h d)
-> Either String ()
forall v a.
(OptimizedKESAlgorithm v, Signable v a, HasCallStack) =>
ContextKES v
-> VerKeyKES v -> Period -> a -> SigKES v -> Either String ()
verifyOptimizedKES
updateKES :: ContextKES (CompactSumKES h d)
-> SignKeyKES (CompactSumKES h d)
-> Period
-> Maybe (SignKeyKES (CompactSumKES h d))
updateKES ContextKES (CompactSumKES h d)
ctx (SignKeyCompactSumKES sk r_1 vk_0 vk_1) Period
t
| Period
tPeriod -> Period -> Period
forall a. Num a => a -> a -> a
+Period
1 Period -> Period -> Bool
forall a. Ord a => a -> a -> Bool
< Period
_T = do SignKeyKES d
sk' <- ContextKES d -> SignKeyKES d -> Period -> Maybe (SignKeyKES d)
forall v.
(KESAlgorithm v, HasCallStack) =>
ContextKES v -> SignKeyKES v -> Period -> Maybe (SignKeyKES v)
updateKES ContextKES d
ContextKES (CompactSumKES h d)
ctx SignKeyKES d
sk Period
t
SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d))
forall (m :: * -> *) a. Monad m => a -> m a
return (SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d)))
-> SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d))
forall a b. (a -> b) -> a -> b
$ SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
forall h d.
SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk' Seed
r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1
| Period
tPeriod -> Period -> Period
forall a. Num a => a -> a -> a
+Period
1 Period -> Period -> Bool
forall a. Eq a => a -> a -> Bool
== Period
_T = do let sk' :: SignKeyKES d
sk' = Seed -> SignKeyKES d
forall v. KESAlgorithm v => Seed -> SignKeyKES v
genKeyKES Seed
r_1
SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d))
forall (m :: * -> *) a. Monad m => a -> m a
return (SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d)))
-> SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d))
forall a b. (a -> b) -> a -> b
$ SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
forall h d.
SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk' Seed
zero VerKeyKES d
vk_0 VerKeyKES d
vk_1
| Bool
otherwise = do SignKeyKES d
sk' <- ContextKES d -> SignKeyKES d -> Period -> Maybe (SignKeyKES d)
forall v.
(KESAlgorithm v, HasCallStack) =>
ContextKES v -> SignKeyKES v -> Period -> Maybe (SignKeyKES v)
updateKES ContextKES d
ContextKES (CompactSumKES h d)
ctx SignKeyKES d
sk (Period
t Period -> Period -> Period
forall a. Num a => a -> a -> a
- Period
_T)
SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d))
forall (m :: * -> *) a. Monad m => a -> m a
return (SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d)))
-> SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d))
forall a b. (a -> b) -> a -> b
$ SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
forall h d.
SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk' Seed
r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1
where
_T :: Period
_T = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
totalPeriodsKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
zero :: Seed
zero = Proxy d -> Seed
forall d. KESAlgorithm d => Proxy d -> Seed
zeroSeed (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
totalPeriodsKES :: proxy (CompactSumKES h d) -> Period
totalPeriodsKES proxy (CompactSumKES h d)
_ = Period
2 Period -> Period -> Period
forall a. Num a => a -> a -> a
* Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
totalPeriodsKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
seedSizeKES :: proxy (CompactSumKES h d) -> Period
seedSizeKES proxy (CompactSumKES h d)
_ = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
seedSizeKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
genKeyKES :: Seed -> SignKeyKES (CompactSumKES h d)
genKeyKES Seed
r = SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
forall h d.
SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk_0 Seed
r1 VerKeyKES d
vk_0 VerKeyKES d
vk_1
where
(Seed
r0, Seed
r1) = Proxy h -> Seed -> (Seed, Seed)
forall h (proxy :: * -> *).
HashAlgorithm h =>
proxy h -> Seed -> (Seed, Seed)
expandSeed (Proxy h
forall k (t :: k). Proxy t
Proxy :: Proxy h) Seed
r
sk_0 :: SignKeyKES d
sk_0 = Seed -> SignKeyKES d
forall v. KESAlgorithm v => Seed -> SignKeyKES v
genKeyKES Seed
r0
vk_0 :: VerKeyKES d
vk_0 = SignKeyKES d -> VerKeyKES d
forall v. KESAlgorithm v => SignKeyKES v -> VerKeyKES v
deriveVerKeyKES SignKeyKES d
sk_0
sk_1 :: SignKeyKES d
sk_1 = Seed -> SignKeyKES d
forall v. KESAlgorithm v => Seed -> SignKeyKES v
genKeyKES Seed
r1
vk_1 :: VerKeyKES d
vk_1 = SignKeyKES d -> VerKeyKES d
forall v. KESAlgorithm v => SignKeyKES v -> VerKeyKES v
deriveVerKeyKES SignKeyKES d
sk_1
sizeVerKeyKES :: proxy (CompactSumKES h d) -> Period
sizeVerKeyKES proxy (CompactSumKES h d)
_ = Proxy h -> Period
forall h (proxy :: * -> *). HashAlgorithm h => proxy h -> Period
sizeHash (Proxy h
forall k (t :: k). Proxy t
Proxy :: Proxy h)
sizeSignKeyKES :: proxy (CompactSumKES h d) -> Period
sizeSignKeyKES proxy (CompactSumKES h d)
_ = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeSignKeyKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
Period -> Period -> Period
forall a. Num a => a -> a -> a
+ Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
seedSizeKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
Period -> Period -> Period
forall a. Num a => a -> a -> a
+ Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeVerKeyKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d) Period -> Period -> Period
forall a. Num a => a -> a -> a
* Period
2
sizeSigKES :: proxy (CompactSumKES h d) -> Period
sizeSigKES proxy (CompactSumKES h d)
_ = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeSigKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
Period -> Period -> Period
forall a. Num a => a -> a -> a
+ Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeVerKeyKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
rawSerialiseVerKeyKES :: VerKeyKES (CompactSumKES h d) -> ByteString
rawSerialiseVerKeyKES (VerKeyCompactSumKES vk) = Hash h (VerKeyKES d, VerKeyKES d) -> ByteString
forall h a. Hash h a -> ByteString
hashToBytes Hash h (VerKeyKES d, VerKeyKES d)
vk
rawSerialiseSignKeyKES :: SignKeyKES (CompactSumKES h d) -> ByteString
rawSerialiseSignKeyKES (SignKeyCompactSumKES sk r_1 vk_0 vk_1) =
[ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
[ SignKeyKES d -> ByteString
forall v. KESAlgorithm v => SignKeyKES v -> ByteString
rawSerialiseSignKeyKES SignKeyKES d
sk
, Seed -> ByteString
getSeedBytes Seed
r_1
, VerKeyKES d -> ByteString
forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_0
, VerKeyKES d -> ByteString
forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_1
]
rawSerialiseSigKES :: SigKES (CompactSumKES h d) -> ByteString
rawSerialiseSigKES (SigCompactSumKES sigma vk_other) =
[ByteString] -> ByteString
forall a. Monoid a => [a] -> a
mconcat
[ SigKES d -> ByteString
forall v. KESAlgorithm v => SigKES v -> ByteString
rawSerialiseSigKES SigKES d
sigma
, VerKeyKES d -> ByteString
forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_other
]
rawDeserialiseVerKeyKES :: ByteString -> Maybe (VerKeyKES (CompactSumKES h d))
rawDeserialiseVerKeyKES = (Hash h (VerKeyKES d, VerKeyKES d)
-> VerKeyKES (CompactSumKES h d))
-> Maybe (Hash h (VerKeyKES d, VerKeyKES d))
-> Maybe (VerKeyKES (CompactSumKES h d))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES (Maybe (Hash h (VerKeyKES d, VerKeyKES d))
-> Maybe (VerKeyKES (CompactSumKES h d)))
-> (ByteString -> Maybe (Hash h (VerKeyKES d, VerKeyKES d)))
-> ByteString
-> Maybe (VerKeyKES (CompactSumKES h d))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ByteString -> Maybe (Hash h (VerKeyKES d, VerKeyKES d))
forall h a. HashAlgorithm h => ByteString -> Maybe (Hash h a)
hashFromBytes
rawDeserialiseSignKeyKES :: ByteString -> Maybe (SignKeyKES (CompactSumKES h d))
rawDeserialiseSignKeyKES ByteString
b = do
Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (ByteString -> Int
BS.length ByteString
b Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Period -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Period
size_total)
SignKeyKES d
sk <- ByteString -> Maybe (SignKeyKES d)
forall v. KESAlgorithm v => ByteString -> Maybe (SignKeyKES v)
rawDeserialiseSignKeyKES ByteString
b_sk
let r :: Seed
r = ByteString -> Seed
mkSeedFromBytes ByteString
b_r
VerKeyKES d
vk_0 <- ByteString -> Maybe (VerKeyKES d)
forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk0
VerKeyKES d
vk_1 <- ByteString -> Maybe (VerKeyKES d)
forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk1
SignKeyKES (CompactSumKES h d)
-> Maybe (SignKeyKES (CompactSumKES h d))
forall (m :: * -> *) a. Monad m => a -> m a
return (SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
forall h d.
SignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk Seed
r VerKeyKES d
vk_0 VerKeyKES d
vk_1)
where
b_sk :: ByteString
b_sk = Period -> Period -> ByteString -> ByteString
slice Period
off_sk Period
size_sk ByteString
b
b_r :: ByteString
b_r = Period -> Period -> ByteString -> ByteString
slice Period
off_r Period
size_r ByteString
b
b_vk0 :: ByteString
b_vk0 = Period -> Period -> ByteString -> ByteString
slice Period
off_vk0 Period
size_vk ByteString
b
b_vk1 :: ByteString
b_vk1 = Period -> Period -> ByteString -> ByteString
slice Period
off_vk1 Period
size_vk ByteString
b
size_sk :: Period
size_sk = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeSignKeyKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
size_r :: Period
size_r = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
seedSizeKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
size_vk :: Period
size_vk = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeVerKeyKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
size_total :: Period
size_total = Proxy (CompactSumKES h d) -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeSignKeyKES (Proxy (CompactSumKES h d)
forall k (t :: k). Proxy t
Proxy :: Proxy (CompactSumKES h d))
off_sk :: Period
off_sk = Period
0 :: Word
off_r :: Period
off_r = Period
size_sk
off_vk0 :: Period
off_vk0 = Period
off_r Period -> Period -> Period
forall a. Num a => a -> a -> a
+ Period
size_r
off_vk1 :: Period
off_vk1 = Period
off_vk0 Period -> Period -> Period
forall a. Num a => a -> a -> a
+ Period
size_vk
rawDeserialiseSigKES :: ByteString -> Maybe (SigKES (CompactSumKES h d))
rawDeserialiseSigKES ByteString
b = do
Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (ByteString -> Int
BS.length ByteString
b Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Period -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Period
size_total)
SigKES d
sigma <- ByteString -> Maybe (SigKES d)
forall v. KESAlgorithm v => ByteString -> Maybe (SigKES v)
rawDeserialiseSigKES ByteString
b_sig
VerKeyKES d
vk <- ByteString -> Maybe (VerKeyKES d)
forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk
SigKES (CompactSumKES h d) -> Maybe (SigKES (CompactSumKES h d))
forall (m :: * -> *) a. Monad m => a -> m a
return (SigKES d -> VerKeyKES d -> SigKES (CompactSumKES h d)
forall h d. SigKES d -> VerKeyKES d -> SigKES (CompactSumKES h d)
SigCompactSumKES SigKES d
sigma VerKeyKES d
vk)
where
b_sig :: ByteString
b_sig = Period -> Period -> ByteString -> ByteString
slice Period
off_sig Period
size_sig ByteString
b
b_vk :: ByteString
b_vk = Period -> Period -> ByteString -> ByteString
slice Period
off_vk Period
size_vk ByteString
b
size_sig :: Period
size_sig = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeSigKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
size_vk :: Period
size_vk = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeVerKeyKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
size_total :: Period
size_total = Proxy (CompactSumKES h d) -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
sizeSigKES (Proxy (CompactSumKES h d)
forall k (t :: k). Proxy t
Proxy :: Proxy (CompactSumKES h d))
off_sig :: Period
off_sig = Period
0 :: Word
off_vk :: Period
off_vk = Period
size_sig
instance (KESAlgorithm (CompactSumKES h d), OptimizedKESAlgorithm d, HashAlgorithm h) => OptimizedKESAlgorithm (CompactSumKES h d) where
verifySigKES :: ContextKES (CompactSumKES h d)
-> Period -> a -> SigKES (CompactSumKES h d) -> Either String ()
verifySigKES ContextKES (CompactSumKES h d)
ctxt Period
t a
a (SigCompactSumKES sigma _) =
ContextKES d -> Period -> a -> SigKES d -> Either String ()
forall v a.
(OptimizedKESAlgorithm v, Signable v a, HasCallStack) =>
ContextKES v -> Period -> a -> SigKES v -> Either String ()
verifySigKES ContextKES d
ContextKES (CompactSumKES h d)
ctxt Period
t' a
a SigKES d
sigma
where
_T :: Period
_T = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
totalPeriodsKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
t' :: Period
t' | Period
t Period -> Period -> Bool
forall a. Ord a => a -> a -> Bool
< Period
_T = Period
t
| Bool
otherwise = Period
t Period -> Period -> Period
forall a. Num a => a -> a -> a
- Period
_T
verKeyFromSigKES :: ContextKES (CompactSumKES h d)
-> Period
-> SigKES (CompactSumKES h d)
-> VerKeyKES (CompactSumKES h d)
verKeyFromSigKES ContextKES (CompactSumKES h d)
ctxt Period
t (SigCompactSumKES sigma vk_other) =
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES (Hash h (VerKeyKES d, VerKeyKES d)
-> VerKeyKES (CompactSumKES h d))
-> Hash h (VerKeyKES d, VerKeyKES d)
-> VerKeyKES (CompactSumKES h d)
forall a b. (a -> b) -> a -> b
$ (VerKeyKES d, VerKeyKES d) -> Hash h (VerKeyKES d, VerKeyKES d)
forall d h.
(KESAlgorithm d, HashAlgorithm h) =>
(VerKeyKES d, VerKeyKES d) -> Hash h (VerKeyKES d, VerKeyKES d)
hashPairOfVKeys (VerKeyKES d
vk_0, VerKeyKES d
vk_1)
where
_T :: Period
_T = Proxy d -> Period
forall v (proxy :: * -> *). KESAlgorithm v => proxy v -> Period
totalPeriodsKES (Proxy d
forall k (t :: k). Proxy t
Proxy :: Proxy d)
t' :: Period
t' | Period
t Period -> Period -> Bool
forall a. Ord a => a -> a -> Bool
< Period
_T = Period
t
| Bool
otherwise = Period
t Period -> Period -> Period
forall a. Num a => a -> a -> a
- Period
_T
(VerKeyKES d
vk_0, VerKeyKES d
vk_1) | Period
t Period -> Period -> Bool
forall a. Ord a => a -> a -> Bool
< Period
_T = (ContextKES d -> Period -> SigKES d -> VerKeyKES d
forall v.
OptimizedKESAlgorithm v =>
ContextKES v -> Period -> SigKES v -> VerKeyKES v
verKeyFromSigKES ContextKES d
ContextKES (CompactSumKES h d)
ctxt Period
t' SigKES d
sigma, VerKeyKES d
vk_other)
| Bool
otherwise = (VerKeyKES d
vk_other, ContextKES d -> Period -> SigKES d -> VerKeyKES d
forall v.
OptimizedKESAlgorithm v =>
ContextKES v -> Period -> SigKES v -> VerKeyKES v
verKeyFromSigKES ContextKES d
ContextKES (CompactSumKES h d)
ctxt Period
t' SigKES d
sigma)
deriving instance HashAlgorithm h => Show (VerKeyKES (CompactSumKES h d))
deriving instance Eq (VerKeyKES (CompactSumKES h d))
instance (KESAlgorithm d) => NoThunks (SignKeyKES (CompactSumKES h d))
instance (OptimizedKESAlgorithm d, HashAlgorithm h, Typeable d)
=> ToCBOR (VerKeyKES (CompactSumKES h d)) where
toCBOR :: VerKeyKES (CompactSumKES h d) -> Encoding
toCBOR = VerKeyKES (CompactSumKES h d) -> Encoding
forall v. KESAlgorithm v => VerKeyKES v -> Encoding
encodeVerKeyKES
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (VerKeyKES (CompactSumKES h d)) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_size = Proxy (VerKeyKES (CompactSumKES h d)) -> Size
forall v. KESAlgorithm v => Proxy (VerKeyKES v) -> Size
encodedVerKeyKESSizeExpr
instance (OptimizedKESAlgorithm d, HashAlgorithm h, Typeable d)
=> FromCBOR (VerKeyKES (CompactSumKES h d)) where
fromCBOR :: Decoder s (VerKeyKES (CompactSumKES h d))
fromCBOR = Decoder s (VerKeyKES (CompactSumKES h d))
forall v s. KESAlgorithm v => Decoder s (VerKeyKES v)
decodeVerKeyKES
deriving instance KESAlgorithm d => Show (SignKeyKES (CompactSumKES h d))
instance (OptimizedKESAlgorithm d) => NoThunks (VerKeyKES (CompactSumKES h d))
instance (OptimizedKESAlgorithm d, HashAlgorithm h, Typeable d)
=> ToCBOR (SignKeyKES (CompactSumKES h d)) where
toCBOR :: SignKeyKES (CompactSumKES h d) -> Encoding
toCBOR = SignKeyKES (CompactSumKES h d) -> Encoding
forall v. KESAlgorithm v => SignKeyKES v -> Encoding
encodeSignKeyKES
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (SignKeyKES (CompactSumKES h d)) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_size = Proxy (SignKeyKES (CompactSumKES h d)) -> Size
forall v. KESAlgorithm v => Proxy (SignKeyKES v) -> Size
encodedSignKeyKESSizeExpr
instance (OptimizedKESAlgorithm d, HashAlgorithm h, Typeable d)
=> FromCBOR (SignKeyKES (CompactSumKES h d)) where
fromCBOR :: Decoder s (SignKeyKES (CompactSumKES h d))
fromCBOR = Decoder s (SignKeyKES (CompactSumKES h d))
forall v s. KESAlgorithm v => Decoder s (SignKeyKES v)
decodeSignKeyKES
deriving instance KESAlgorithm d => Show (SigKES (CompactSumKES h d))
deriving instance KESAlgorithm d => Eq (SigKES (CompactSumKES h d))
instance KESAlgorithm d => NoThunks (SigKES (CompactSumKES h d))
instance (OptimizedKESAlgorithm d, HashAlgorithm h, Typeable d)
=> ToCBOR (SigKES (CompactSumKES h d)) where
toCBOR :: SigKES (CompactSumKES h d) -> Encoding
toCBOR = SigKES (CompactSumKES h d) -> Encoding
forall v. KESAlgorithm v => SigKES v -> Encoding
encodeSigKES
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (SigKES (CompactSumKES h d)) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_size = Proxy (SigKES (CompactSumKES h d)) -> Size
forall v. KESAlgorithm v => Proxy (SigKES v) -> Size
encodedSigKESSizeExpr
instance (OptimizedKESAlgorithm d, HashAlgorithm h, Typeable d)
=> FromCBOR (SigKES (CompactSumKES h d)) where
fromCBOR :: Decoder s (SigKES (CompactSumKES h d))
fromCBOR = Decoder s (SigKES (CompactSumKES h d))
forall v s. KESAlgorithm v => Decoder s (SigKES v)
decodeSigKES