{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
module Data.MapExtras
( StrictTriple (..),
extract,
noKeys,
keysEqual,
splitMemberMap,
splitMemberSet,
intersectDomP,
intersectDomPLeft,
intersectMapSetFold,
disjointMapSetFold,
extractKeys,
extractKeysSmallSet,
)
where
import Data.Map.Internal (Map (..), balanceL, balanceR, glue, link, link2)
import qualified Data.Map.Strict as Map
import Data.Set (Set)
import qualified Data.Set as Set
import qualified Data.Set.Internal as Set
import GHC.Exts (isTrue#, reallyUnsafePtrEquality#, (==#))
data StrictTriple a b c = StrictTriple !a !b !c
deriving (Int -> StrictTriple a b c -> ShowS
[StrictTriple a b c] -> ShowS
StrictTriple a b c -> String
(Int -> StrictTriple a b c -> ShowS)
-> (StrictTriple a b c -> String)
-> ([StrictTriple a b c] -> ShowS)
-> Show (StrictTriple a b c)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall a b c.
(Show a, Show b, Show c) =>
Int -> StrictTriple a b c -> ShowS
forall a b c.
(Show a, Show b, Show c) =>
[StrictTriple a b c] -> ShowS
forall a b c.
(Show a, Show b, Show c) =>
StrictTriple a b c -> String
showList :: [StrictTriple a b c] -> ShowS
$cshowList :: forall a b c.
(Show a, Show b, Show c) =>
[StrictTriple a b c] -> ShowS
show :: StrictTriple a b c -> String
$cshow :: forall a b c.
(Show a, Show b, Show c) =>
StrictTriple a b c -> String
showsPrec :: Int -> StrictTriple a b c -> ShowS
$cshowsPrec :: forall a b c.
(Show a, Show b, Show c) =>
Int -> StrictTriple a b c -> ShowS
Show, StrictTriple a b c -> StrictTriple a b c -> Bool
(StrictTriple a b c -> StrictTriple a b c -> Bool)
-> (StrictTriple a b c -> StrictTriple a b c -> Bool)
-> Eq (StrictTriple a b c)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall a b c.
(Eq a, Eq b, Eq c) =>
StrictTriple a b c -> StrictTriple a b c -> Bool
/= :: StrictTriple a b c -> StrictTriple a b c -> Bool
$c/= :: forall a b c.
(Eq a, Eq b, Eq c) =>
StrictTriple a b c -> StrictTriple a b c -> Bool
== :: StrictTriple a b c -> StrictTriple a b c -> Bool
$c== :: forall a b c.
(Eq a, Eq b, Eq c) =>
StrictTriple a b c -> StrictTriple a b c -> Bool
Eq)
noKeys :: Ord k => Map k a -> Map k b -> Map k a
noKeys :: Map k a -> Map k b -> Map k a
noKeys Map k a
Tip Map k b
_ = Map k a
forall k a. Map k a
Tip
noKeys Map k a
m Map k b
Tip = Map k a
m
noKeys Map k a
m (Bin Int
_ k
k b
_ Map k b
ls Map k b
rs) = case k -> Map k a -> (Map k a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
Map.split k
k Map k a
m of
(Map k a
lm, Map k a
rm) -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
lm' Map k a
rm'
where
!lm' :: Map k a
lm' = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
noKeys Map k a
lm Map k b
ls
!rm' :: Map k a
rm' = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
noKeys Map k a
rm Map k b
rs
{-# INLINEABLE noKeys #-}
ptrEq :: a -> a -> Bool
ptrEq :: a -> a -> Bool
ptrEq a
x a
y = Int# -> Bool
isTrue# (a -> a -> Int#
forall a. a -> a -> Int#
reallyUnsafePtrEquality# a
x a
y Int# -> Int# -> Int#
==# Int#
1#)
{-# INLINE ptrEq #-}
keysEqual :: Ord k => Map k v1 -> Map k v2 -> Bool
keysEqual :: Map k v1 -> Map k v2 -> Bool
keysEqual Map k v1
Tip Map k v2
Tip = Bool
True
keysEqual Map k v1
Tip (Bin Int
_ k
_ v2
_ Map k v2
_ Map k v2
_) = Bool
False
keysEqual (Bin Int
_ k
_ v1
_ Map k v1
_ Map k v1
_) Map k v2
Tip = Bool
False
keysEqual Map k v1
m (Bin Int
_ k
k v2
_ Map k v2
ls Map k v2
rs) =
case k -> Map k v1 -> StrictTriple (Map k v1) Bool (Map k v1)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
splitMemberMap k
k Map k v1
m of
StrictTriple Map k v1
lm Bool
True Map k v1
rm -> Map k v2 -> Map k v1 -> Bool
forall k v1 v2. Ord k => Map k v1 -> Map k v2 -> Bool
keysEqual Map k v2
ls Map k v1
lm Bool -> Bool -> Bool
&& Map k v2 -> Map k v1 -> Bool
forall k v1 v2. Ord k => Map k v1 -> Map k v2 -> Bool
keysEqual Map k v2
rs Map k v1
rm
StrictTriple (Map k v1) Bool (Map k v1)
_ -> Bool
False
{-# INLINEABLE keysEqual #-}
splitMemberMap :: Ord k => k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
splitMemberMap :: k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
splitMemberMap = k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go
where
go :: Ord k => k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go :: k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go !k
k Map k a
t =
case Map k a
t of
Map k a
Tip -> Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
forall k a. Map k a
Tip Bool
False Map k a
forall k a. Map k a
Tip
Bin Int
_ k
kx a
x Map k a
l Map k a
r -> case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT ->
let !(StrictTriple Map k a
lt Bool
z Map k a
gt) = k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k Map k a
l
!gt' :: Map k a
gt' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
gt Map k a
r
in Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt Bool
z Map k a
gt'
Ordering
GT ->
let !(StrictTriple Map k a
lt Bool
z Map k a
gt) = k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k Map k a
r
!lt' :: Map k a
lt' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lt
in Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt' Bool
z Map k a
gt
Ordering
EQ -> Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
l Bool
True Map k a
r
{-# INLINEABLE splitMemberMap #-}
splitMemberSet :: Ord a => a -> Set a -> StrictTriple (Set a) Bool (Set a)
splitMemberSet :: a -> Set a -> StrictTriple (Set a) Bool (Set a)
splitMemberSet a
_ Set a
Set.Tip = Set a -> Bool -> Set a -> StrictTriple (Set a) Bool (Set a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Set a
forall a. Set a
Set.Tip Bool
False Set a
forall a. Set a
Set.Tip
splitMemberSet a
x (Set.Bin Int
_ a
y Set a
l Set a
r) =
case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of
Ordering
LT ->
let !(StrictTriple Set a
lt Bool
found Set a
gt) = a -> Set a -> StrictTriple (Set a) Bool (Set a)
forall a. Ord a => a -> Set a -> StrictTriple (Set a) Bool (Set a)
splitMemberSet a
x Set a
l
!gt' :: Set a
gt' = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
Set.link a
y Set a
gt Set a
r
in Set a -> Bool -> Set a -> StrictTriple (Set a) Bool (Set a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Set a
lt Bool
found Set a
gt'
Ordering
GT ->
let !(StrictTriple Set a
lt Bool
found Set a
gt) = a -> Set a -> StrictTriple (Set a) Bool (Set a)
forall a. Ord a => a -> Set a -> StrictTriple (Set a) Bool (Set a)
splitMemberSet a
x Set a
r
!lt' :: Set a
lt' = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
Set.link a
y Set a
l Set a
lt
in Set a -> Bool -> Set a -> StrictTriple (Set a) Bool (Set a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Set a
lt' Bool
found Set a
gt
Ordering
EQ -> Set a -> Bool -> Set a -> StrictTriple (Set a) Bool (Set a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Set a
l Bool
True Set a
r
{-# INLINEABLE splitMemberSet #-}
intersectDomP :: Ord k => (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v2
intersectDomP :: (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v2
intersectDomP k -> v2 -> Bool
_ Map k v1
Tip Map k v2
_ = Map k v2
forall k a. Map k a
Tip
intersectDomP k -> v2 -> Bool
_ Map k v1
_ Map k v2
Tip = Map k v2
forall k a. Map k a
Tip
intersectDomP k -> v2 -> Bool
p Map k v1
t1 (Bin Int
_ k
k v2
v Map k v2
l2 Map k v2
r2) =
if Bool
mb Bool -> Bool -> Bool
&& k -> v2 -> Bool
p k
k v2
v
then k -> v2 -> Map k v2 -> Map k v2 -> Map k v2
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k v2
v Map k v2
l1l2 Map k v2
r1r2
else Map k v2 -> Map k v2 -> Map k v2
forall k a. Map k a -> Map k a -> Map k a
link2 Map k v2
l1l2 Map k v2
r1r2
where
!(StrictTriple Map k v1
l1 Bool
mb Map k v1
r1) = k -> Map k v1 -> StrictTriple (Map k v1) Bool (Map k v1)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
splitMemberMap k
k Map k v1
t1
!l1l2 :: Map k v2
l1l2 = (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v2
forall k v2 v1.
Ord k =>
(k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v2
intersectDomP k -> v2 -> Bool
p Map k v1
l1 Map k v2
l2
!r1r2 :: Map k v2
r1r2 = (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v2
forall k v2 v1.
Ord k =>
(k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v2
intersectDomP k -> v2 -> Bool
p Map k v1
r1 Map k v2
r2
{-# INLINEABLE intersectDomP #-}
intersectDomPLeft :: Ord k => (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v1
intersectDomPLeft :: (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v1
intersectDomPLeft k -> v2 -> Bool
_ Map k v1
Tip Map k v2
_ = Map k v1
forall k a. Map k a
Tip
intersectDomPLeft k -> v2 -> Bool
_ Map k v1
_ Map k v2
Tip = Map k v1
forall k a. Map k a
Tip
intersectDomPLeft k -> v2 -> Bool
p (Bin Int
_ k
k v1
v1 Map k v1
l1 Map k v1
r1) Map k v2
t2 =
case Maybe v2
mb of
Just v2
v2 | k -> v2 -> Bool
p k
k v2
v2 -> k -> v1 -> Map k v1 -> Map k v1 -> Map k v1
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k v1
v1 Map k v1
l1l2 Map k v1
r1r2
Maybe v2
_other -> Map k v1 -> Map k v1 -> Map k v1
forall k a. Map k a -> Map k a -> Map k a
link2 Map k v1
l1l2 Map k v1
r1r2
where
!(Map k v2
l2, Maybe v2
mb, Map k v2
r2) = k -> Map k v2 -> (Map k v2, Maybe v2, Map k v2)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
Map.splitLookup k
k Map k v2
t2
!l1l2 :: Map k v1
l1l2 = (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v1
forall k v2 v1.
Ord k =>
(k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v1
intersectDomPLeft k -> v2 -> Bool
p Map k v1
l1 Map k v2
l2
!r1r2 :: Map k v1
r1r2 = (k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v1
forall k v2 v1.
Ord k =>
(k -> v2 -> Bool) -> Map k v1 -> Map k v2 -> Map k v1
intersectDomPLeft k -> v2 -> Bool
p Map k v1
r1 Map k v2
r2
{-# INLINEABLE intersectDomPLeft #-}
intersectMapSetFold :: Ord k => (k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
intersectMapSetFold :: (k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
intersectMapSetFold k -> v -> ans -> ans
_accum Map k v
Tip Set k
_ !ans
ans = ans
ans
intersectMapSetFold k -> v -> ans -> ans
_accum Map k v
_ Set k
set !ans
ans | Set k -> Bool
forall a. Set a -> Bool
Set.null Set k
set = ans
ans
intersectMapSetFold k -> v -> ans -> ans
accum (Bin Int
_ k
k v
v Map k v
l1 Map k v
l2) Set k
set !ans
ans =
(k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
forall k v ans.
Ord k =>
(k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
intersectMapSetFold k -> v -> ans -> ans
accum Map k v
l1 Set k
s1 (k -> v -> ans -> ans
addKV k
k v
v ((k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
forall k v ans.
Ord k =>
(k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
intersectMapSetFold k -> v -> ans -> ans
accum Map k v
l2 Set k
s2 ans
ans))
where
(Set k
s1, Bool
found, Set k
s2) = k -> Set k -> (Set k, Bool, Set k)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
Set.splitMember k
k Set k
set
addKV :: k -> v -> ans -> ans
addKV k
k1 v
v1 !ans
ans1 = if Bool
found then k -> v -> ans -> ans
accum k
k1 v
v1 ans
ans1 else ans
ans1
{-# INLINEABLE intersectMapSetFold #-}
disjointMapSetFold :: Ord k => (k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
disjointMapSetFold :: (k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
disjointMapSetFold k -> v -> ans -> ans
_accum Map k v
Tip Set k
_ !ans
ans = ans
ans
disjointMapSetFold k -> v -> ans -> ans
accum Map k v
m Set k
set !ans
ans | Set k -> Bool
forall a. Set a -> Bool
Set.null Set k
set = (k -> v -> ans -> ans) -> ans -> Map k v -> ans
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
Map.foldrWithKey' k -> v -> ans -> ans
accum ans
ans Map k v
m
disjointMapSetFold k -> v -> ans -> ans
accum (Bin Int
_ k
k v
v Map k v
l1 Map k v
l2) Set k
set !ans
ans =
(k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
forall k v ans.
Ord k =>
(k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
disjointMapSetFold k -> v -> ans -> ans
accum Map k v
l1 Set k
s1 (k -> v -> ans -> ans
addKV k
k v
v ((k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
forall k v ans.
Ord k =>
(k -> v -> ans -> ans) -> Map k v -> Set k -> ans -> ans
disjointMapSetFold k -> v -> ans -> ans
accum Map k v
l2 Set k
s2 ans
ans))
where
(Set k
s1, Bool
found, Set k
s2) = k -> Set k -> (Set k, Bool, Set k)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
Set.splitMember k
k Set k
set
addKV :: k -> v -> ans -> ans
addKV k
k1 v
v1 !ans
ans1 = if Bool -> Bool
not Bool
found then k -> v -> ans -> ans
accum k
k1 v
v1 ans
ans1 else ans
ans1
{-# INLINEABLE disjointMapSetFold #-}
extract# :: Ord k => k -> Map k a -> (# Maybe a, Map k a #)
!k
k = Map k a -> (# Maybe a, Map k a #)
forall a. Map k a -> (# Maybe a, Map k a #)
go
where
go :: Map k a -> (# Maybe a, Map k a #)
go Map k a
Tip = (# Maybe a
forall a. Maybe a
Nothing, Map k a
forall k a. Map k a
Tip #)
go t :: Map k a
t@(Bin Int
_ k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT
| Map k a
l' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l -> (# Maybe a
mVal, Map k a
t #)
| Bool
otherwise -> let !m :: Map k a
m = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r in (# Maybe a
mVal, Map k a
m #)
where
!(# Maybe a
mVal, Map k a
l' #) = Map k a -> (# Maybe a, Map k a #)
go Map k a
l
Ordering
GT
| Map k a
r' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r -> (# Maybe a
mVal, Map k a
t #)
| Bool
otherwise -> let !m :: Map k a
m = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r' in (# Maybe a
mVal, Map k a
m #)
where
!(# Maybe a
mVal, Map k a
r' #) = Map k a -> (# Maybe a, Map k a #)
go Map k a
r
Ordering
EQ -> let !m :: Map k a
m = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r in (# a -> Maybe a
forall a. a -> Maybe a
Just a
x, Map k a
m #)
{-# INLINE extract# #-}
extract :: Ord k => k -> Map k b -> (Maybe b, Map k b)
k
k Map k b
m =
case k -> Map k b -> (# Maybe b, Map k b #)
forall k a. Ord k => k -> Map k a -> (# Maybe a, Map k a #)
extract# k
k Map k b
m of
(# Just b
v, Map k b
m' #) -> (b -> Maybe b
forall a. a -> Maybe a
Just b
v, Map k b
m')
(# Maybe b, Map k b #)
_ -> (Maybe b
forall a. Maybe a
Nothing, Map k b
m)
{-# INLINE extract #-}
extractKeys :: Ord k => Map k a -> Set k -> (Map k a, Map k a)
Map k a
m Set k
s
| Set k -> Int
forall a. Set a -> Int
Set.size Set k
s Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
6 = Map k a -> Set k -> (Map k a, Map k a)
forall k a. Ord k => Map k a -> Set k -> (Map k a, Map k a)
extractKeysSmallSet Map k a
m Set k
s
| Bool
otherwise =
case Map k a -> Set k -> (# Map k a, Map k a #)
forall k a. Ord k => Map k a -> Set k -> (# Map k a, Map k a #)
extractKeys# Map k a
m Set k
s of
(# Map k a
w, Map k a
r #) -> (Map k a
w, Map k a
r)
{-# INLINE extractKeys #-}
extractKeysSmallSet :: Ord k => Map k a -> Set.Set k -> (Map k a, Map k a)
Map k a
sm = ((Map k a, Map k a) -> k -> (Map k a, Map k a))
-> (Map k a, Map k a) -> Set k -> (Map k a, Map k a)
forall a b. (a -> b -> a) -> a -> Set b -> a
Set.foldl' (Map k a, Map k a) -> k -> (Map k a, Map k a)
forall k a. Ord k => (Map k a, Map k a) -> k -> (Map k a, Map k a)
f (Map k a
sm, Map k a
forall k a. Map k a
Map.empty)
where
f :: (Map k a, Map k a) -> k -> (Map k a, Map k a)
f acc :: (Map k a, Map k a)
acc@(Map k a
without, Map k a
restrict) k
k =
case k -> Map k a -> (# Maybe a, Map k a #)
forall k a. Ord k => k -> Map k a -> (# Maybe a, Map k a #)
extract# k
k Map k a
without of
(# Just a
v, Map k a
without' #) ->
let !restrict' :: Map k a
restrict' = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert k
k a
v Map k a
restrict
in (Map k a
without', Map k a
restrict')
(# Maybe a, Map k a #)
_ -> (Map k a, Map k a)
acc
{-# INLINE extractKeysSmallSet #-}
extractKeys# :: Ord k => Map k a -> Set k -> (# Map k a, Map k a #)
Map k a
Tip Set k
_ = (# Map k a
forall k a. Map k a
Tip, Map k a
forall k a. Map k a
Tip #)
extractKeys# Map k a
m Set k
Set.Tip = (# Map k a
m, Map k a
forall k a. Map k a
Tip #)
extractKeys# m :: Map k a
m@(Bin Int
_ k
k a
x Map k a
lm Map k a
rm) Set k
s = (# Map k a
w, Map k a
r #)
where
!(StrictTriple Set k
ls Bool
b Set k
rs) = k -> Set k -> StrictTriple (Set k) Bool (Set k)
forall a. Ord a => a -> Set a -> StrictTriple (Set a) Bool (Set a)
splitMemberSet k
k Set k
s
!w :: Map k a
w
| Bool -> Bool
not Bool
b =
if Map k a
lmw Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
lm Bool -> Bool -> Bool
&& Map k a
rmw Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
rm
then Map k a
m
else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
lmw Map k a
rmw
| Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
lmw Map k a
rmw
!r :: Map k a
r
| Bool
b =
if Map k a
lmr Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
lm Bool -> Bool -> Bool
&& Map k a
rmr Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
rm
then Map k a
m
else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
lmr Map k a
rmr
| Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
lmr Map k a
rmr
!(# Map k a
lmw, Map k a
lmr #) = Map k a -> Set k -> (# Map k a, Map k a #)
forall k a. Ord k => Map k a -> Set k -> (# Map k a, Map k a #)
extractKeys# Map k a
lm Set k
ls
!(# Map k a
rmw, Map k a
rmr #) = Map k a -> Set k -> (# Map k a, Map k a #)
forall k a. Ord k => Map k a -> Set k -> (# Map k a, Map k a #)
extractKeys# Map k a
rm Set k
rs
{-# INLINEABLE extractKeys# #-}