{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE EmptyDataDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeFamilies #-}
module Cardano.Protocol.TPraos.Rules.Updn
( UPDN,
UpdnEnv (..),
UpdnState (..),
PredicateFailure,
UpdnPredicateFailure,
)
where
import Cardano.Ledger.BaseTypes
import Cardano.Ledger.Crypto
import Cardano.Ledger.Slot
import Control.Monad.Trans.Reader (asks)
import Control.State.Transition
import GHC.Generics (Generic)
import NoThunks.Class (NoThunks (..))
data UPDN crypto
newtype UpdnEnv
=
UpdnEnv
Nonce
data UpdnState = UpdnState Nonce Nonce
deriving (Int -> UpdnState -> ShowS
[UpdnState] -> ShowS
UpdnState -> String
(Int -> UpdnState -> ShowS)
-> (UpdnState -> String)
-> ([UpdnState] -> ShowS)
-> Show UpdnState
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UpdnState] -> ShowS
$cshowList :: [UpdnState] -> ShowS
show :: UpdnState -> String
$cshow :: UpdnState -> String
showsPrec :: Int -> UpdnState -> ShowS
$cshowsPrec :: Int -> UpdnState -> ShowS
Show, UpdnState -> UpdnState -> Bool
(UpdnState -> UpdnState -> Bool)
-> (UpdnState -> UpdnState -> Bool) -> Eq UpdnState
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UpdnState -> UpdnState -> Bool
$c/= :: UpdnState -> UpdnState -> Bool
== :: UpdnState -> UpdnState -> Bool
$c== :: UpdnState -> UpdnState -> Bool
Eq)
data UpdnPredicateFailure crypto
deriving ((forall x.
UpdnPredicateFailure crypto -> Rep (UpdnPredicateFailure crypto) x)
-> (forall x.
Rep (UpdnPredicateFailure crypto) x -> UpdnPredicateFailure crypto)
-> Generic (UpdnPredicateFailure crypto)
forall x.
Rep (UpdnPredicateFailure crypto) x -> UpdnPredicateFailure crypto
forall x.
UpdnPredicateFailure crypto -> Rep (UpdnPredicateFailure crypto) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall crypto x.
Rep (UpdnPredicateFailure crypto) x -> UpdnPredicateFailure crypto
forall crypto x.
UpdnPredicateFailure crypto -> Rep (UpdnPredicateFailure crypto) x
$cto :: forall crypto x.
Rep (UpdnPredicateFailure crypto) x -> UpdnPredicateFailure crypto
$cfrom :: forall crypto x.
UpdnPredicateFailure crypto -> Rep (UpdnPredicateFailure crypto) x
Generic, Int -> UpdnPredicateFailure crypto -> ShowS
[UpdnPredicateFailure crypto] -> ShowS
UpdnPredicateFailure crypto -> String
(Int -> UpdnPredicateFailure crypto -> ShowS)
-> (UpdnPredicateFailure crypto -> String)
-> ([UpdnPredicateFailure crypto] -> ShowS)
-> Show (UpdnPredicateFailure crypto)
forall crypto. Int -> UpdnPredicateFailure crypto -> ShowS
forall crypto. [UpdnPredicateFailure crypto] -> ShowS
forall crypto. UpdnPredicateFailure crypto -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UpdnPredicateFailure crypto] -> ShowS
$cshowList :: forall crypto. [UpdnPredicateFailure crypto] -> ShowS
show :: UpdnPredicateFailure crypto -> String
$cshow :: forall crypto. UpdnPredicateFailure crypto -> String
showsPrec :: Int -> UpdnPredicateFailure crypto -> ShowS
$cshowsPrec :: forall crypto. Int -> UpdnPredicateFailure crypto -> ShowS
Show, UpdnPredicateFailure crypto -> UpdnPredicateFailure crypto -> Bool
(UpdnPredicateFailure crypto
-> UpdnPredicateFailure crypto -> Bool)
-> (UpdnPredicateFailure crypto
-> UpdnPredicateFailure crypto -> Bool)
-> Eq (UpdnPredicateFailure crypto)
forall crypto.
UpdnPredicateFailure crypto -> UpdnPredicateFailure crypto -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UpdnPredicateFailure crypto -> UpdnPredicateFailure crypto -> Bool
$c/= :: forall crypto.
UpdnPredicateFailure crypto -> UpdnPredicateFailure crypto -> Bool
== :: UpdnPredicateFailure crypto -> UpdnPredicateFailure crypto -> Bool
$c== :: forall crypto.
UpdnPredicateFailure crypto -> UpdnPredicateFailure crypto -> Bool
Eq)
instance NoThunks (UpdnPredicateFailure crypto)
newtype UpdnEvent crypto = NewEpoch EpochNo
instance
(Crypto crypto) =>
STS (UPDN crypto)
where
type State (UPDN crypto) = UpdnState
type Signal (UPDN crypto) = SlotNo
type Environment (UPDN crypto) = UpdnEnv
type BaseM (UPDN crypto) = ShelleyBase
type PredicateFailure (UPDN crypto) = UpdnPredicateFailure crypto
type Event (UPDN crypto) = UpdnEvent crypto
initialRules :: [InitialRule (UPDN crypto)]
initialRules =
[ UpdnState -> F (Clause (UPDN crypto) 'Initial) UpdnState
forall (f :: * -> *) a. Applicative f => a -> f a
pure
( Nonce -> Nonce -> UpdnState
UpdnState
Nonce
initialNonce
Nonce
initialNonce
)
]
where
initialNonce :: Nonce
initialNonce = Word64 -> Nonce
mkNonceFromNumber Word64
0
transitionRules :: [TransitionRule (UPDN crypto)]
transitionRules = [TransitionRule (UPDN crypto)
forall crypto. Crypto crypto => TransitionRule (UPDN crypto)
updTransition]
updTransition :: Crypto crypto => TransitionRule (UPDN crypto)
updTransition :: TransitionRule (UPDN crypto)
updTransition = do
TRC (UpdnEnv eta, UpdnState eta_v eta_c, Signal (UPDN crypto)
s) <- F (Clause (UPDN crypto) 'Transition) (TRC (UPDN crypto))
forall sts (rtype :: RuleType).
Rule sts rtype (RuleContext rtype sts)
judgmentContext
EpochInfo Identity
ei <- BaseM (UPDN crypto) (EpochInfo Identity)
-> Rule (UPDN crypto) 'Transition (EpochInfo Identity)
forall sts a (ctx :: RuleType).
STS sts =>
BaseM sts a -> Rule sts ctx a
liftSTS (BaseM (UPDN crypto) (EpochInfo Identity)
-> Rule (UPDN crypto) 'Transition (EpochInfo Identity))
-> BaseM (UPDN crypto) (EpochInfo Identity)
-> Rule (UPDN crypto) 'Transition (EpochInfo Identity)
forall a b. (a -> b) -> a -> b
$ (Globals -> EpochInfo Identity)
-> ReaderT Globals Identity (EpochInfo Identity)
forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks Globals -> EpochInfo Identity
epochInfoPure
Word64
sp <- BaseM (UPDN crypto) Word64 -> Rule (UPDN crypto) 'Transition Word64
forall sts a (ctx :: RuleType).
STS sts =>
BaseM sts a -> Rule sts ctx a
liftSTS (BaseM (UPDN crypto) Word64
-> Rule (UPDN crypto) 'Transition Word64)
-> BaseM (UPDN crypto) Word64
-> Rule (UPDN crypto) 'Transition Word64
forall a b. (a -> b) -> a -> b
$ (Globals -> Word64) -> ReaderT Globals Identity Word64
forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks Globals -> Word64
stabilityWindow
EpochNo Word64
e <- BaseM (UPDN crypto) EpochNo
-> Rule (UPDN crypto) 'Transition EpochNo
forall sts a (ctx :: RuleType).
STS sts =>
BaseM sts a -> Rule sts ctx a
liftSTS (BaseM (UPDN crypto) EpochNo
-> Rule (UPDN crypto) 'Transition EpochNo)
-> BaseM (UPDN crypto) EpochNo
-> Rule (UPDN crypto) 'Transition EpochNo
forall a b. (a -> b) -> a -> b
$ HasCallStack => EpochInfo Identity -> SlotNo -> ShelleyBase EpochNo
EpochInfo Identity -> SlotNo -> ShelleyBase EpochNo
epochInfoEpoch EpochInfo Identity
ei SlotNo
Signal (UPDN crypto)
s
let newEpochNo :: EpochNo
newEpochNo = Word64 -> EpochNo
EpochNo (Word64
e Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64
1)
SlotNo
firstSlotNextEpoch <- BaseM (UPDN crypto) SlotNo -> Rule (UPDN crypto) 'Transition SlotNo
forall sts a (ctx :: RuleType).
STS sts =>
BaseM sts a -> Rule sts ctx a
liftSTS (BaseM (UPDN crypto) SlotNo
-> Rule (UPDN crypto) 'Transition SlotNo)
-> BaseM (UPDN crypto) SlotNo
-> Rule (UPDN crypto) 'Transition SlotNo
forall a b. (a -> b) -> a -> b
$ HasCallStack => EpochInfo Identity -> EpochNo -> ShelleyBase SlotNo
EpochInfo Identity -> EpochNo -> ShelleyBase SlotNo
epochInfoFirst EpochInfo Identity
ei EpochNo
newEpochNo
Event (UPDN crypto) -> Rule (UPDN crypto) 'Transition ()
forall sts (ctx :: RuleType). Event sts -> Rule sts ctx ()
tellEvent (Event (UPDN crypto) -> Rule (UPDN crypto) 'Transition ())
-> Event (UPDN crypto) -> Rule (UPDN crypto) 'Transition ()
forall a b. (a -> b) -> a -> b
$ EpochNo -> UpdnEvent crypto
forall crypto. EpochNo -> UpdnEvent crypto
NewEpoch EpochNo
newEpochNo
UpdnState -> F (Clause (UPDN crypto) 'Transition) UpdnState
forall (f :: * -> *) a. Applicative f => a -> f a
pure (UpdnState -> F (Clause (UPDN crypto) 'Transition) UpdnState)
-> UpdnState -> F (Clause (UPDN crypto) 'Transition) UpdnState
forall a b. (a -> b) -> a -> b
$
Nonce -> Nonce -> UpdnState
UpdnState
(Nonce
eta_v Nonce -> Nonce -> Nonce
⭒ Nonce
eta)
( if SlotNo
Signal (UPDN crypto)
s SlotNo -> Duration -> SlotNo
+* Word64 -> Duration
Duration Word64
sp SlotNo -> SlotNo -> Bool
forall a. Ord a => a -> a -> Bool
< SlotNo
firstSlotNextEpoch
then Nonce
eta_v Nonce -> Nonce -> Nonce
⭒ Nonce
eta
else Nonce
eta_c
)