module Control.Foldl.NonEmpty where
import Control.Applicative (liftA2)
import Control.Foldl (Fold(..))
import Control.Foldl.Internal (Either'(..))
import Data.List.NonEmpty (NonEmpty(..))
import Data.Profunctor (Profunctor(..))
import Data.Semigroup.Foldable (Foldable1(..))
import Prelude hiding (head, last, minimum, maximum)
import qualified Control.Foldl as Foldl
data Fold1 a b = Fold1 (a -> Fold a b)
instance Functor (Fold1 a) where
fmap :: (a -> b) -> Fold1 a a -> Fold1 a b
fmap a -> b
f (Fold1 a -> Fold a a
k) = (a -> Fold a b) -> Fold1 a b
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 ((Fold a a -> Fold a b) -> (a -> Fold a a) -> a -> Fold a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> Fold a a -> Fold a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) a -> Fold a a
k)
{-# INLINE fmap #-}
instance Profunctor Fold1 where
lmap :: (a -> b) -> Fold1 b c -> Fold1 a c
lmap a -> b
f (Fold1 b -> Fold b c
k) = (a -> Fold a c) -> Fold1 a c
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 a -> Fold a c
k'
where
k' :: a -> Fold a c
k' a
a = (a -> b) -> Fold b c -> Fold a c
forall (p :: * -> * -> *) a b c.
Profunctor p =>
(a -> b) -> p b c -> p a c
lmap a -> b
f (b -> Fold b c
k (a -> b
f a
a))
{-# INLINE lmap #-}
rmap :: (b -> c) -> Fold1 a b -> Fold1 a c
rmap = (b -> c) -> Fold1 a b -> Fold1 a c
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
{-# INLINE rmap #-}
instance Applicative (Fold1 a) where
pure :: a -> Fold1 a a
pure a
b = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (Fold a a -> a -> Fold a a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> Fold a a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
b))
{-# INLINE pure #-}
Fold1 a -> Fold a (a -> b)
l <*> :: Fold1 a (a -> b) -> Fold1 a a -> Fold1 a b
<*> Fold1 a -> Fold a a
r = (a -> Fold a b) -> Fold1 a b
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 ((Fold a (a -> b) -> Fold a a -> Fold a b)
-> (a -> Fold a (a -> b)) -> (a -> Fold a a) -> a -> Fold a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 Fold a (a -> b) -> Fold a a -> Fold a b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>) a -> Fold a (a -> b)
l a -> Fold a a
r)
{-# INLINE (<*>) #-}
instance Semigroup b => Semigroup (Fold1 a b) where
<> :: Fold1 a b -> Fold1 a b -> Fold1 a b
(<>) = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Semigroup a => a -> a -> a
(<>)
{-# INLINE (<>) #-}
instance Monoid b => Monoid (Fold1 a b) where
mempty :: Fold1 a b
mempty = b -> Fold1 a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
forall a. Monoid a => a
mempty
{-# INLINE mempty #-}
mappend :: Fold1 a b -> Fold1 a b -> Fold1 a b
mappend = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Monoid a => a -> a -> a
mappend
{-# INLINE mappend #-}
instance Num b => Num (Fold1 a b) where
fromInteger :: Integer -> Fold1 a b
fromInteger = b -> Fold1 a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure (b -> Fold1 a b) -> (Integer -> b) -> Integer -> Fold1 a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> b
forall a. Num a => Integer -> a
fromInteger
{-# INLINE fromInteger #-}
negate :: Fold1 a b -> Fold1 a b
negate = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Num a => a -> a
negate
{-# INLINE negate #-}
abs :: Fold1 a b -> Fold1 a b
abs = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Num a => a -> a
abs
{-# INLINE abs #-}
signum :: Fold1 a b -> Fold1 a b
signum = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Num a => a -> a
signum
{-# INLINE signum #-}
+ :: Fold1 a b -> Fold1 a b -> Fold1 a b
(+) = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Num a => a -> a -> a
(+)
{-# INLINE (+) #-}
* :: Fold1 a b -> Fold1 a b -> Fold1 a b
(*) = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Num a => a -> a -> a
(*)
{-# INLINE (*) #-}
(-) = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (-)
{-# INLINE (-) #-}
instance Fractional b => Fractional (Fold1 a b) where
fromRational :: Rational -> Fold1 a b
fromRational = b -> Fold1 a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure (b -> Fold1 a b) -> (Rational -> b) -> Rational -> Fold1 a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rational -> b
forall a. Fractional a => Rational -> a
fromRational
{-# INLINE fromRational #-}
recip :: Fold1 a b -> Fold1 a b
recip = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Fractional a => a -> a
recip
{-# INLINE recip #-}
/ :: Fold1 a b -> Fold1 a b -> Fold1 a b
(/) = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Fractional a => a -> a -> a
(/)
{-# INLINE (/) #-}
instance Floating b => Floating (Fold1 a b) where
pi :: Fold1 a b
pi = b -> Fold1 a b
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
forall a. Floating a => a
pi
{-# INLINE pi #-}
exp :: Fold1 a b -> Fold1 a b
exp = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
exp
{-# INLINE exp #-}
sqrt :: Fold1 a b -> Fold1 a b
sqrt = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
sqrt
{-# INLINE sqrt #-}
log :: Fold1 a b -> Fold1 a b
log = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
log
{-# INLINE log #-}
sin :: Fold1 a b -> Fold1 a b
sin = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
sin
{-# INLINE sin #-}
tan :: Fold1 a b -> Fold1 a b
tan = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
tan
{-# INLINE tan #-}
cos :: Fold1 a b -> Fold1 a b
cos = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
cos
{-# INLINE cos #-}
asin :: Fold1 a b -> Fold1 a b
asin = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
asin
{-# INLINE asin #-}
atan :: Fold1 a b -> Fold1 a b
atan = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
atan
{-# INLINE atan #-}
acos :: Fold1 a b -> Fold1 a b
acos = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
acos
{-# INLINE acos #-}
sinh :: Fold1 a b -> Fold1 a b
sinh = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
sinh
{-# INLINE sinh #-}
tanh :: Fold1 a b -> Fold1 a b
tanh = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
tanh
{-# INLINE tanh #-}
cosh :: Fold1 a b -> Fold1 a b
cosh = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
cosh
{-# INLINE cosh #-}
asinh :: Fold1 a b -> Fold1 a b
asinh = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
asinh
{-# INLINE asinh #-}
atanh :: Fold1 a b -> Fold1 a b
atanh = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
atanh
{-# INLINE atanh #-}
acosh :: Fold1 a b -> Fold1 a b
acosh = (b -> b) -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> b
forall a. Floating a => a -> a
acosh
{-# INLINE acosh #-}
** :: Fold1 a b -> Fold1 a b -> Fold1 a b
(**) = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Floating a => a -> a -> a
(**)
{-# INLINE (**) #-}
logBase :: Fold1 a b -> Fold1 a b -> Fold1 a b
logBase = (b -> b -> b) -> Fold1 a b -> Fold1 a b -> Fold1 a b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 b -> b -> b
forall a. Floating a => a -> a -> a
logBase
{-# INLINE logBase #-}
fold1 :: Foldable1 f => Fold1 a b -> f a -> b
fold1 :: Fold1 a b -> f a -> b
fold1 (Fold1 a -> Fold a b
k) f a
as1 = Fold a b -> [a] -> b
forall (f :: * -> *) a b. Foldable f => Fold a b -> f a -> b
Foldl.fold (a -> Fold a b
k a
a) [a]
as
where
a
a :| [a]
as = f a -> NonEmpty a
forall (t :: * -> *) a. Foldable1 t => t a -> NonEmpty a
toNonEmpty f a
as1
{-# INLINABLE fold1 #-}
fromFold :: Fold a b -> Fold1 a b
fromFold :: Fold a b -> Fold1 a b
fromFold (Fold x -> a -> x
step x
begin x -> b
done) = (a -> Fold a b) -> Fold1 a b
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
a -> (x -> a -> x) -> x -> (x -> b) -> Fold a b
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold x -> a -> x
step (x -> a -> x
step x
begin a
a) x -> b
done)
{-# INLINABLE fromFold #-}
toFold :: Fold1 a b -> Fold a (Maybe b)
toFold :: Fold1 a b -> Fold a (Maybe b)
toFold (Fold1 a -> Fold a b
k0) = (Either' (a -> Fold a b) (Fold a b)
-> a -> Either' (a -> Fold a b) (Fold a b))
-> Either' (a -> Fold a b) (Fold a b)
-> (Either' (a -> Fold a b) (Fold a b) -> Maybe b)
-> Fold a (Maybe b)
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold Either' (a -> Fold a b) (Fold a b)
-> a -> Either' (a -> Fold a b) (Fold a b)
forall a b a.
Either' (a -> Fold a b) (Fold a b) -> a -> Either' a (Fold a b)
step Either' (a -> Fold a b) (Fold a b)
forall b. Either' (a -> Fold a b) b
begin Either' (a -> Fold a b) (Fold a b) -> Maybe b
forall a a a. Either' a (Fold a a) -> Maybe a
done
where
begin :: Either' (a -> Fold a b) b
begin = (a -> Fold a b) -> Either' (a -> Fold a b) b
forall a b. a -> Either' a b
Left' a -> Fold a b
k0
step :: Either' (a -> Fold a b) (Fold a b) -> a -> Either' a (Fold a b)
step (Left' a -> Fold a b
k) a
a = Fold a b -> Either' a (Fold a b)
forall a b. b -> Either' a b
Right' (a -> Fold a b
k a
a)
step (Right' (Fold x -> a -> x
step' x
begin' x -> b
done')) a
a =
Fold a b -> Either' a (Fold a b)
forall a b. b -> Either' a b
Right' ((x -> a -> x) -> x -> (x -> b) -> Fold a b
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold x -> a -> x
step' (x -> a -> x
step' x
begin' a
a) x -> b
done')
done :: Either' a (Fold a a) -> Maybe a
done (Right' (Fold x -> a -> x
_ x
begin' x -> a
done')) = a -> Maybe a
forall a. a -> Maybe a
Just (x -> a
done' x
begin')
done (Left' a
_) = Maybe a
forall a. Maybe a
Nothing
{-# INLINABLE toFold #-}
nonEmpty :: Fold1 a (NonEmpty a)
nonEmpty :: Fold1 a (NonEmpty a)
nonEmpty = (a -> Fold a (NonEmpty a)) -> Fold1 a (NonEmpty a)
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
a -> ([a] -> NonEmpty a) -> Fold a [a] -> Fold a (NonEmpty a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a
a a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:|) Fold a [a]
forall a. Fold a [a]
Foldl.list)
{-# INLINEABLE nonEmpty #-}
sconcat :: Semigroup a => Fold1 a a
sconcat :: Fold1 a a
sconcat = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> (a -> a -> a) -> a -> (a -> a) -> Fold a a
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
forall a. Semigroup a => a -> a -> a
(<>) a
begin a -> a
forall a. a -> a
id)
{-# INLINABLE sconcat #-}
head :: Fold1 a a
head :: Fold1 a a
head = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> (a -> a -> a) -> a -> (a -> a) -> Fold a a
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
forall p p. p -> p -> p
step a
begin a -> a
forall a. a -> a
id)
where
step :: p -> p -> p
step p
a p
_ = p
a
{-# INLINABLE head #-}
last :: Fold1 a a
last :: Fold1 a a
last = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> (a -> a -> a) -> a -> (a -> a) -> Fold a a
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
forall p p. p -> p -> p
step a
begin a -> a
forall a. a -> a
id)
where
step :: p -> p -> p
step p
_ p
a = p
a
{-# INLINABLE last #-}
maximum :: Ord a => Fold1 a a
maximum :: Fold1 a a
maximum = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> (a -> a -> a) -> a -> (a -> a) -> Fold a a
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
forall a. Ord a => a -> a -> a
max a
begin a -> a
forall a. a -> a
id)
{-# INLINABLE maximum #-}
maximumBy :: (a -> a -> Ordering) -> Fold1 a a
maximumBy :: (a -> a -> Ordering) -> Fold1 a a
maximumBy a -> a -> Ordering
cmp = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> (a -> a -> a) -> a -> (a -> a) -> Fold a a
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
max' a
begin a -> a
forall a. a -> a
id)
where
max' :: a -> a -> a
max' a
x a
y = case a -> a -> Ordering
cmp a
x a
y of
Ordering
GT -> a
x
Ordering
_ -> a
y
{-# INLINABLE maximumBy #-}
minimum :: Ord a => Fold1 a a
minimum :: Fold1 a a
minimum = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> (a -> a -> a) -> a -> (a -> a) -> Fold a a
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
forall a. Ord a => a -> a -> a
min a
begin a -> a
forall a. a -> a
id)
{-# INLINABLE minimum #-}
minimumBy :: (a -> a -> Ordering) -> Fold1 a a
minimumBy :: (a -> a -> Ordering) -> Fold1 a a
minimumBy a -> a -> Ordering
cmp = (a -> Fold a a) -> Fold1 a a
forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> (a -> a -> a) -> a -> (a -> a) -> Fold a a
forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
min' a
begin a -> a
forall a. a -> a
id)
where
min' :: a -> a -> a
min' a
x a
y = case a -> a -> Ordering
cmp a
x a
y of
Ordering
GT -> a
y
Ordering
_ -> a
x
{-# INLINABLE minimumBy #-}