{-# LANGUAGE RankNTypes #-}
module Control.Foldl.Optics where

import Data.Profunctor

type Prism s t a b = forall p f. (Choice p, Applicative f) => p a (f b) -> p s (f t)

type Prism' s a = Prism s s a a

prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
prism b -> t
bt s -> Either t a
seta = (s -> Either t a)
-> (Either t (f b) -> f t)
-> p (Either t a) (Either t (f b))
-> p s (f t)
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap s -> Either t a
seta ((t -> f t) -> (f b -> f t) -> Either t (f b) -> f t
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either t -> f t
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((b -> t) -> f b -> f t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> t
bt)) (p (Either t a) (Either t (f b)) -> p s (f t))
-> (p a (f b) -> p (Either t a) (Either t (f b)))
-> p a (f b)
-> p s (f t)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (f b) -> p (Either t a) (Either t (f b))
forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right'
{-# INLINE prism #-}

_Left :: Prism (Either a c) (Either b c) a b
_Left :: p a (f b) -> p (Either a c) (f (Either b c))
_Left = (b -> Either b c)
-> (Either a c -> Either (Either b c) a)
-> Prism (Either a c) (Either b c) a b
forall b t s a. (b -> t) -> (s -> Either t a) -> Prism s t a b
prism b -> Either b c
forall a b. a -> Either a b
Left ((Either a c -> Either (Either b c) a)
 -> Prism (Either a c) (Either b c) a b)
-> (Either a c -> Either (Either b c) a)
-> Prism (Either a c) (Either b c) a b
forall a b. (a -> b) -> a -> b
$ (a -> Either (Either b c) a)
-> (c -> Either (Either b c) a)
-> Either a c
-> Either (Either b c) a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either a -> Either (Either b c) a
forall a b. b -> Either a b
Right (Either b c -> Either (Either b c) a
forall a b. a -> Either a b
Left (Either b c -> Either (Either b c) a)
-> (c -> Either b c) -> c -> Either (Either b c) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> Either b c
forall a b. b -> Either a b
Right)
{-# INLINE _Left #-}

_Right :: Prism (Either c a) (Either c b) a b
_Right :: p a (f b) -> p (Either c a) (f (Either c b))
_Right = (b -> Either c b)
-> (Either c a -> Either (Either c b) a)
-> Prism (Either c a) (Either c b) a b
forall b t s a. (b -> t) -> (s -> Either t a) -> Prism s t a b
prism b -> Either c b
forall a b. b -> Either a b
Right ((Either c a -> Either (Either c b) a)
 -> Prism (Either c a) (Either c b) a b)
-> (Either c a -> Either (Either c b) a)
-> Prism (Either c a) (Either c b) a b
forall a b. (a -> b) -> a -> b
$ (c -> Either (Either c b) a)
-> (a -> Either (Either c b) a)
-> Either c a
-> Either (Either c b) a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Either c b -> Either (Either c b) a
forall a b. a -> Either a b
Left (Either c b -> Either (Either c b) a)
-> (c -> Either c b) -> c -> Either (Either c b) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> Either c b
forall a b. a -> Either a b
Left) a -> Either (Either c b) a
forall a b. b -> Either a b
Right
{-# INLINE _Right #-}