generics-sop-0.5.1.2: Generic Programming using True Sums of Products
Safe Haskell None
Language Haskell2010

Generics.SOP

Description

Main module of generics-sop

In most cases, you will probably want to import just this module, and possibly Generics.SOP.TH if you want to use Template Haskell to generate Generic instances for you.

Generic programming with sums of products

You need this library if you want to define your own generic functions in the sum-of-products SOP style. Generic programming in the SOP style follows the following idea:

  1. A large class of datatypes can be viewed in a uniform, structured way: the choice between constructors is represented using an n-ary sum (called NS ), and the arguments of each constructor are represented using an n-ary product (called NP ).
  2. The library captures the notion of a datatype being representable in the following way. There is a class Generic , which for a given datatype A , associates the isomorphic SOP representation with the original type under the name Rep A . The class also provides functions from and to that convert between A and Rep A and witness the isomorphism.
  3. Since all Rep types are sums of products, you can define functions over them by performing induction on the structure, or by using predefined combinators that the library provides. Such functions then work for all Rep types.
  4. By combining the conversion functions from and to with the function that works on Rep types, we obtain a function that works on all types that are in the Generic class.
  5. Most types can very easily be made an instance of Generic . For example, if the datatype can be represented using GHC's built-in approach to generic programming and has an instance for the Generic class from module GHC.Generics , then an instance of the SOP Generic can automatically be derived. There is also Template Haskell code in Generics.SOP.TH that allows to auto-generate an instance of Generic for most types.

Example

Instantiating a datatype for use with SOP generics

Let's assume we have the datatypes:

data A   = C Bool | D A Int | E (B ())
data B a = F | G a Char Bool

To create Generic instances for A and B via GHC.Generics , we say

{-# LANGUAGE DeriveGeneric #-}

import qualified GHC.Generics as GHC
import Generics.SOP

data A   = C Bool | D A Int | E (B ())
  deriving (Show, GHC.Generic)
data B a = F | G a Char Bool
  deriving (Show, GHC.Generic)

instance Generic A     -- empty
instance Generic (B a) -- empty

Now we can convert between A and Rep A (and between B and Rep B ). For example,

>>> from (D (C True) 3) :: Rep A
SOP (S (Z (I (C True) :* I 3 :* Nil)))
>>> to it :: A
D (C True) 3

Note that the transformation is shallow: In D (C True) 3 , the inner value C True of type A is not affected by the transformation.

For more details about Rep A , have a look at the Generics.SOP.Universe module.

Defining a generic function

As an example of a generic function, let us define a generic version of rnf from the deepseq package.

The type of rnf is

NFData a => a -> ()

and the idea is that for a term x of type a in the NFData class, rnf x forces complete evaluation of x (i.e., evaluation to normal form ), and returns () .

We call the generic version of this function grnf . A direct definition in SOP style, making use of structural recursion on the sums and products, looks as follows:

grnf :: (Generic a, All2 NFData (Code a)) => a -> ()
grnf x = grnfS (from x)

grnfS :: (All2 NFData xss) => SOP I xss -> ()
grnfS (SOP (Z xs))  = grnfP xs
grnfS (SOP (S xss)) = grnfS (SOP xss)

grnfP :: (All NFData xs) => NP I xs -> ()
grnfP Nil         = ()
grnfP (I x :* xs) = x `deepseq` (grnfP xs)

The grnf function performs the conversion between a and Rep a by applying from and then applies grnfS . The type of grnf indicates that a must be in the Generic class so that we can apply from , and that all the components of a (i.e., all the types that occur as constructor arguments) must be in the NFData class ( All2 ).

The function grnfS traverses the outer sum structure of the sum of products (note that Rep a = SOP I ( Code a) ). It encodes which constructor was used to construct the original argument of type a . Once we've found the constructor in question ( Z ), we traverse the arguments of that constructor using grnfP .

The function grnfP traverses the product structure of the constructor arguments. Each argument is evaluated using the deepseq function from the NFData class. This requires that all components of the product must be in the NFData class ( All ) and triggers the corresponding constraints on the other functions. Once the end of the product is reached ( Nil ), we return () .

Defining a generic function using combinators

In many cases, generic functions can be written in a much more concise way by avoiding the explicit structural recursion and resorting to the powerful combinators provided by this library instead.

For example, the grnf function can also be defined as a one-liner as follows:

grnf :: (Generic a, All2 NFData (Code a)) => a -> ()
grnf = rnf . hcollapse . hcmap (Proxy :: Proxy NFData) (mapIK rnf) . from

mapIK and friends ( mapII , mapKI , etc.) are small helpers for working with I and K functors, for example mapIK is defined as mapIK f = \ ( I x) -> K (f x)

The following interaction should provide an idea of the individual transformation steps:

>>> let x = G 2.5 'A' False :: B Double
>>> from x
SOP (S (Z (I 2.5 :* I 'A' :* I False :* Nil)))
>>> hcmap (Proxy :: Proxy NFData) (mapIK rnf) it
SOP (S (Z (K () :* K () :* K () :* Nil)))
>>> hcollapse it
[(),(),()]
>>> rnf it
()

The from call converts into the structural representation. Via hcmap , we apply rnf to all the components. The result is a sum of products of the same shape, but the components are no longer heterogeneous ( I ), but homogeneous ( K () ). A homogeneous structure can be collapsed ( hcollapse ) into a normal Haskell list. Finally, rnf actually forces evaluation of this list (and thereby actually drives the evaluation of all the previous steps) and produces the final result.

Using a generic function

We can directly invoke grnf on any type that is an instance of class Generic .

>>> grnf (G 2.5 'A' False)
()
>>> grnf (G 2.5 undefined False)
*** Exception: Prelude.undefined
...

Note that the type of grnf requires that all components of the type are in the NFData class. For a recursive datatype such as B , this means that we have to make A (and in this case, also B ) an instance of NFData in order to be able to use the grnf function. But we can use grnf to supply the instance definitions:

instance NFData A where rnf = grnf
instance NFData a => NFData (B a) where rnf = grnf

More examples

The best way to learn about how to define generic functions in the SOP style is to look at a few simple examples. Examples are provided by the following packages:

The generic functions in these packages use a wide variety of the combinators that are offered by the library.

Paper

A detailed description of the ideas behind this library is provided by the paper:

Synopsis

Codes and interpretations

class All SListI ( Code a) => Generic (a :: Type ) where Source #

The class of representable datatypes.

The SOP approach to generic programming is based on viewing datatypes as a representation ( Rep ) built from the sum of products of its components. The components of a datatype are specified using the Code type family.

The isomorphism between the original Haskell datatype and its representation is witnessed by the methods of this class, from and to . So for instances of this class, the following laws should (in general) hold:

to . from === id :: a -> a
from . to === id :: Rep a -> Rep a

You typically don't define instances of this class by hand, but rather derive the class instance automatically.

Option 1: Derive via the built-in GHC-generics. For this, you need to use the DeriveGeneric extension to first derive an instance of the Generic class from module GHC.Generics . With this, you can then give an empty instance for Generic , and the default definitions will just work. The pattern looks as follows:

import qualified GHC.Generics as GHC
import Generics.SOP

...

data T = ... deriving (GHC.Generic, ...)

instance Generic T -- empty
instance HasDatatypeInfo T -- empty, if you want/need metadata

Option 2: Derive via Template Haskell. For this, you need to enable the TemplateHaskell extension. You can then use deriveGeneric from module Generics.SOP.TH to have the instance generated for you. The pattern looks as follows:

import Generics.SOP
import Generics.SOP.TH

...

data T = ...

deriveGeneric ''T -- derives HasDatatypeInfo as well

Tradeoffs: Whether to use Option 1 or 2 is mainly a matter of personal taste. The version based on Template Haskell probably has less run-time overhead.

Non-standard instances: It is possible to give Generic instances manually that deviate from the standard scheme, as long as at least

to . from === id :: a -> a

still holds.

Minimal complete definition

Nothing

Associated Types

type Code a :: [[ Type ]] Source #

The code of a datatype.

This is a list of lists of its components. The outer list contains one element per constructor. The inner list contains one element per constructor argument (field).

Example: The datatype

data Tree = Leaf Int | Node Tree Tree

is supposed to have the following code:

type instance Code (Tree a) =
  '[ '[ Int ]
   , '[ Tree, Tree ]
   ]

type Code a = GCode a

Methods

from :: a -> Rep a Source #

Converts from a value to its structural representation.

to :: Rep a -> a Source #

Converts from a structural representation back to the original value.

Instances

Instances details
Generic Bool Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Bool :: [[ Type ]] Source #

Generic Ordering Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Ordering :: [[ Type ]] Source #

Generic RuntimeRep Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code RuntimeRep :: [[ Type ]] Source #

Generic VecCount Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code VecCount :: [[ Type ]] Source #

Generic VecElem Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code VecElem :: [[ Type ]] Source #

Generic R Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code R :: [[ Type ]] Source #

Generic D Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code D :: [[ Type ]] Source #

Generic C Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code C :: [[ Type ]] Source #

Generic S Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code S :: [[ Type ]] Source #

Generic CallStack Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CallStack :: [[ Type ]] Source #

Generic () Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code () :: [[ Type ]] Source #

Generic E0 Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code E0 :: [[ Type ]] Source #

Generic E1 Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code E1 :: [[ Type ]] Source #

Generic E2 Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code E2 :: [[ Type ]] Source #

Generic E3 Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code E3 :: [[ Type ]] Source #

Generic E6 Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code E6 :: [[ Type ]] Source #

Generic E9 Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code E9 :: [[ Type ]] Source #

Generic E12 Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code E12 :: [[ Type ]] Source #

Generic Void Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Void :: [[ Type ]] Source #

Generic SpecConstrAnnotation Source #
Instance details

Defined in Generics.SOP.Instances

Generic DataRep Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code DataRep :: [[ Type ]] Source #

Generic ConstrRep Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ConstrRep :: [[ Type ]] Source #

Generic Fixity Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Fixity :: [[ Type ]] Source #

Generic SrcLoc Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code SrcLoc :: [[ Type ]] Source #

Generic Location Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Location :: [[ Type ]] Source #

Generic GiveGCStats Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code GiveGCStats :: [[ Type ]] Source #

Generic GCFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code GCFlags :: [[ Type ]] Source #

Generic ConcFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ConcFlags :: [[ Type ]] Source #

Generic MiscFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code MiscFlags :: [[ Type ]] Source #

Generic DebugFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code DebugFlags :: [[ Type ]] Source #

Generic DoCostCentres Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code DoCostCentres :: [[ Type ]] Source #

Generic CCFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CCFlags :: [[ Type ]] Source #

Generic DoHeapProfile Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code DoHeapProfile :: [[ Type ]] Source #

Generic ProfFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ProfFlags :: [[ Type ]] Source #

Generic DoTrace Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code DoTrace :: [[ Type ]] Source #

Generic TraceFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code TraceFlags :: [[ Type ]] Source #

Generic TickyFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code TickyFlags :: [[ Type ]] Source #

Generic ParFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ParFlags :: [[ Type ]] Source #

Generic RTSFlags Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code RTSFlags :: [[ Type ]] Source #

Generic RTSStats Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code RTSStats :: [[ Type ]] Source #

Generic GCDetails Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code GCDetails :: [[ Type ]] Source #

Generic ByteOrder Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ByteOrder :: [[ Type ]] Source #

Generic StaticPtrInfo Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code StaticPtrInfo :: [[ Type ]] Source #

Generic FormatAdjustment Source #
Instance details

Defined in Generics.SOP.Instances

Generic FormatSign Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code FormatSign :: [[ Type ]] Source #

Generic FieldFormat Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code FieldFormat :: [[ Type ]] Source #

Generic FormatParse Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code FormatParse :: [[ Type ]] Source #

Generic Version Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Version :: [[ Type ]] Source #

Generic HandlePosn Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code HandlePosn :: [[ Type ]] Source #

Generic PatternMatchFail Source #
Instance details

Defined in Generics.SOP.Instances

Generic RecSelError Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code RecSelError :: [[ Type ]] Source #

Generic RecConError Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code RecConError :: [[ Type ]] Source #

Generic RecUpdError Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code RecUpdError :: [[ Type ]] Source #

Generic NoMethodError Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code NoMethodError :: [[ Type ]] Source #

Generic TypeError Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code TypeError :: [[ Type ]] Source #

Generic NonTermination Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code NonTermination :: [[ Type ]] Source #

Generic NestedAtomically Source #
Instance details

Defined in Generics.SOP.Instances

Generic BlockReason Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code BlockReason :: [[ Type ]] Source #

Generic ThreadStatus Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ThreadStatus :: [[ Type ]] Source #

Generic Errno Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Errno :: [[ Type ]] Source #

Generic CodingFailureMode Source #
Instance details

Defined in Generics.SOP.Instances

Generic BlockedIndefinitelyOnMVar Source #
Instance details

Defined in Generics.SOP.Instances

Generic BlockedIndefinitelyOnSTM Source #
Instance details

Defined in Generics.SOP.Instances

Generic Deadlock Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Deadlock :: [[ Type ]] Source #

Generic AllocationLimitExceeded Source #
Instance details

Defined in Generics.SOP.Instances

Generic AssertionFailed Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code AssertionFailed :: [[ Type ]] Source #

Generic AsyncException Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code AsyncException :: [[ Type ]] Source #

Generic ArrayException Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ArrayException :: [[ Type ]] Source #

Generic FixIOException Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code FixIOException :: [[ Type ]] Source #

Generic ExitCode Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ExitCode :: [[ Type ]] Source #

Generic IOErrorType Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code IOErrorType :: [[ Type ]] Source #

Generic BufferMode Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code BufferMode :: [[ Type ]] Source #

Generic Newline Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Newline :: [[ Type ]] Source #

Generic NewlineMode Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code NewlineMode :: [[ Type ]] Source #

Generic IODeviceType Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code IODeviceType :: [[ Type ]] Source #

Generic SeekMode Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code SeekMode :: [[ Type ]] Source #

Generic CodingProgress Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CodingProgress :: [[ Type ]] Source #

Generic BufferState Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code BufferState :: [[ Type ]] Source #

Generic MaskingState Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code MaskingState :: [[ Type ]] Source #

Generic IOException Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code IOException :: [[ Type ]] Source #

Generic LockMode Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code LockMode :: [[ Type ]] Source #

Generic ErrorCall Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ErrorCall :: [[ Type ]] Source #

Generic ArithException Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ArithException :: [[ Type ]] Source #

Generic All Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code All :: [[ Type ]] Source #

Generic Any Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Any :: [[ Type ]] Source #

Generic Fixity Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Fixity :: [[ Type ]] Source #

Generic Associativity Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Associativity :: [[ Type ]] Source #

Generic SourceUnpackedness Source #
Instance details

Defined in Generics.SOP.Instances

Generic SourceStrictness Source #
Instance details

Defined in Generics.SOP.Instances

Generic DecidedStrictness Source #
Instance details

Defined in Generics.SOP.Instances

Generic CChar Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CChar :: [[ Type ]] Source #

Generic CSChar Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CSChar :: [[ Type ]] Source #

Generic CUChar Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CUChar :: [[ Type ]] Source #

Generic CShort Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CShort :: [[ Type ]] Source #

Generic CUShort Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CUShort :: [[ Type ]] Source #

Generic CInt Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CInt :: [[ Type ]] Source #

Generic CUInt Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CUInt :: [[ Type ]] Source #

Generic CLong Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CLong :: [[ Type ]] Source #

Generic CULong Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CULong :: [[ Type ]] Source #

Generic CLLong Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CLLong :: [[ Type ]] Source #

Generic CULLong Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CULLong :: [[ Type ]] Source #

Generic CFloat Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CFloat :: [[ Type ]] Source #

Generic CDouble Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CDouble :: [[ Type ]] Source #

Generic CPtrdiff Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CPtrdiff :: [[ Type ]] Source #

Generic CSize Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CSize :: [[ Type ]] Source #

Generic CWchar Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CWchar :: [[ Type ]] Source #

Generic CSigAtomic Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CSigAtomic :: [[ Type ]] Source #

Generic CClock Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CClock :: [[ Type ]] Source #

Generic CTime Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CTime :: [[ Type ]] Source #

Generic CUSeconds Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CUSeconds :: [[ Type ]] Source #

Generic CSUSeconds Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CSUSeconds :: [[ Type ]] Source #

Generic CIntPtr Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CIntPtr :: [[ Type ]] Source #

Generic CUIntPtr Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CUIntPtr :: [[ Type ]] Source #

Generic CIntMax Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CIntMax :: [[ Type ]] Source #

Generic CUIntMax Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code CUIntMax :: [[ Type ]] Source #

Generic IOMode Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code IOMode :: [[ Type ]] Source #

Generic Fingerprint Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Fingerprint :: [[ Type ]] Source #

Generic Lexeme Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Lexeme :: [[ Type ]] Source #

Generic Number Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Number :: [[ Type ]] Source #

Generic FFFormat Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code FFFormat :: [[ Type ]] Source #

Generic GeneralCategory Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code GeneralCategory :: [[ Type ]] Source #

Generic SrcLoc Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code SrcLoc :: [[ Type ]] Source #

Generic [a] Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code [a] :: [[ Type ]] Source #

Methods

from :: [a] -> Rep [a] Source #

to :: Rep [a] -> [a] Source #

Generic ( Maybe a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Maybe a) :: [[ Type ]] Source #

Generic ( Par1 p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Par1 p) :: [[ Type ]] Source #

Generic ( Complex a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Complex a) :: [[ Type ]] Source #

Generic ( Min a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Min a) :: [[ Type ]] Source #

Generic ( Max a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Max a) :: [[ Type ]] Source #

Generic ( First a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( First a) :: [[ Type ]] Source #

Generic ( Last a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Last a) :: [[ Type ]] Source #

Generic ( WrappedMonoid m) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( WrappedMonoid m) :: [[ Type ]] Source #

Generic ( Option a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Option a) :: [[ Type ]] Source #

Generic ( ArgOrder a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( ArgOrder a) :: [[ Type ]] Source #

Generic ( OptDescr a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( OptDescr a) :: [[ Type ]] Source #

Generic ( ArgDescr a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( ArgDescr a) :: [[ Type ]] Source #

Generic ( Identity a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Identity a) :: [[ Type ]] Source #

Generic ( Buffer e) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Buffer e) :: [[ Type ]] Source #

Generic ( First a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( First a) :: [[ Type ]] Source #

Generic ( Last a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Last a) :: [[ Type ]] Source #

Generic ( Dual a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Dual a) :: [[ Type ]] Source #

Generic ( Endo a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Endo a) :: [[ Type ]] Source #

Generic ( Sum a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Sum a) :: [[ Type ]] Source #

Generic ( Product a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Product a) :: [[ Type ]] Source #

Generic ( Down a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Down a) :: [[ Type ]] Source #

Generic ( NonEmpty a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( NonEmpty a) :: [[ Type ]] Source #

Generic ( I a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( I a) :: [[ Type ]] Source #

Generic ( Either a b) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Either a b) :: [[ Type ]] Source #

Generic ( V1 p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( V1 p) :: [[ Type ]] Source #

Generic ( U1 p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( U1 p) :: [[ Type ]] Source #

Generic (a, b) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b) :: [[ Type ]] Source #

Methods

from :: (a, b) -> Rep (a, b) Source #

to :: Rep (a, b) -> (a, b) Source #

Generic ( Fixed a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Fixed a) :: [[ Type ]] Source #

Generic ( Arg a b) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Arg a b) :: [[ Type ]] Source #

Generic ( Proxy t) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Proxy t) :: [[ Type ]] Source #

Generic (a, b, c) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c) :: [[ Type ]] Source #

Methods

from :: (a, b, c) -> Rep (a, b, c) Source #

to :: Rep (a, b, c) -> (a, b, c) Source #

Generic ( BufferCodec from to state) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( BufferCodec from to state) :: [[ Type ]] Source #

Methods

from :: BufferCodec from to state -> Rep ( BufferCodec from to state) Source #

to :: Rep ( BufferCodec from to state) -> BufferCodec from to state Source #

Generic ( Const a b) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Const a b) :: [[ Type ]] Source #

Generic ( Alt f a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Alt f a) :: [[ Type ]] Source #

Generic ( K a b) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( K a b) :: [[ Type ]] Source #

Generic ( K1 i c p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( K1 i c p) :: [[ Type ]] Source #

Methods

from :: K1 i c p -> Rep ( K1 i c p) Source #

to :: Rep ( K1 i c p) -> K1 i c p Source #

Generic ((f :+: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ((f :+: g) p) :: [[ Type ]] Source #

Methods

from :: (f :+: g) p -> Rep ((f :+: g) p) Source #

to :: Rep ((f :+: g) p) -> (f :+: g) p Source #

Generic ((f :*: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ((f :*: g) p) :: [[ Type ]] Source #

Methods

from :: (f :*: g) p -> Rep ((f :*: g) p) Source #

to :: Rep ((f :*: g) p) -> (f :*: g) p Source #

Generic (a, b, c, d) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d) -> Rep (a, b, c, d) Source #

to :: Rep (a, b, c, d) -> (a, b, c, d) Source #

Generic ( Product f g a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Product f g a) :: [[ Type ]] Source #

Generic ( Sum f g a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Sum f g a) :: [[ Type ]] Source #

Generic ((f -.-> g) a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ((f -.-> g) a) :: [[ Type ]] Source #

Methods

from :: (f -.-> g) a -> Rep ((f -.-> g) a) Source #

to :: Rep ((f -.-> g) a) -> (f -.-> g) a Source #

Generic ( M1 i c f p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( M1 i c f p) :: [[ Type ]] Source #

Methods

from :: M1 i c f p -> Rep ( M1 i c f p) Source #

to :: Rep ( M1 i c f p) -> M1 i c f p Source #

Generic ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ((f :.: g) p) :: [[ Type ]] Source #

Methods

from :: (f :.: g) p -> Rep ((f :.: g) p) Source #

to :: Rep ((f :.: g) p) -> (f :.: g) p Source #

Generic (a, b, c, d, e) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e) -> Rep (a, b, c, d, e) Source #

to :: Rep (a, b, c, d, e) -> (a, b, c, d, e) Source #

Generic ( Compose f g a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Compose f g a) :: [[ Type ]] Source #

Generic ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ((f :.: g) p) :: [[ Type ]] Source #

Methods

from :: (f :.: g) p -> Rep ((f :.: g) p) Source #

to :: Rep ((f :.: g) p) -> (f :.: g) p Source #

Generic (a, b, c, d, e, f) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f) -> Rep (a, b, c, d, e, f) Source #

to :: Rep (a, b, c, d, e, f) -> (a, b, c, d, e, f) Source #

Generic (a, b, c, d, e, f, g) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g) -> Rep (a, b, c, d, e, f, g) Source #

to :: Rep (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) Source #

Generic (a, b, c, d, e, f, g, h) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h) -> Rep (a, b, c, d, e, f, g, h) Source #

to :: Rep (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) Source #

Generic (a, b, c, d, e, f, g, h, i) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i) -> Rep (a, b, c, d, e, f, g, h, i) Source #

to :: Rep (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) Source #

Generic (a, b, c, d, e, f, g, h, i, j) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j) -> Rep (a, b, c, d, e, f, g, h, i, j) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k) -> Rep (a, b, c, d, e, f, g, h, i, j, k) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) Source #

Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) :: [[ Type ]] Source #

Methods

from :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) -> Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) Source #

to :: Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) Source #

type Rep a = SOP I ( Code a) Source #

The (generic) representation of a datatype.

A datatype is isomorphic to the sum-of-products of its code. The isomorphism is witnessed by from and to from the Generic class.

type IsProductType (a :: Type ) (xs :: [ Type ]) = ( Generic a, Code a ~ '[xs]) Source #

Constraint that captures that a datatype is a product type, i.e., a type with a single constructor.

It also gives access to the code for the arguments of that constructor.

Since: 0.3.1.0

type ProductCode (a :: Type ) = Head ( Code a) Source #

Direct access to the part of the code that is relevant for a product type.

Since: 0.4.0.0

productTypeFrom :: IsProductType a xs => a -> NP I xs Source #

Convert from a product type to its product representation.

Since: 0.4.0.0

productTypeTo :: IsProductType a xs => NP I xs -> a Source #

Convert a product representation to the original type.

Since: 0.4.0.0

type IsEnumType (a :: Type ) = ( Generic a, All ((~) '[]) ( Code a)) Source #

Constraint that captures that a datatype is an enumeration type, i.e., none of the constructors have any arguments.

Since: 0.3.1.0

enumTypeFrom :: IsEnumType a => a -> NS ( K ()) ( Code a) Source #

Convert from an enum type to its sum representation.

Since: 0.4.0.0

enumTypeTo :: IsEnumType a => NS ( K ()) ( Code a) -> a Source #

Convert a sum representation to ihe original type.

type IsWrappedType (a :: Type ) (x :: Type ) = ( Generic a, Code a ~ '['[x]]) Source #

Constraint that captures that a datatype is a single-constructor, single-field datatype. This always holds for newtype-defined types, but it can also be true for data-defined types.

The constraint also gives access to the type that is wrapped.

Since: 0.3.1.0

type WrappedCode (a :: Type ) = Head ( Head ( Code a)) Source #

Direct access to the part of the code that is relevant for wrapped types and newtypes.

Since: 0.4.0.0

wrappedTypeFrom :: IsWrappedType a x => a -> x Source #

Convert from a wrapped type to its inner type.

Since: 0.4.0.0

wrappedTypeTo :: IsWrappedType a x => x -> a Source #

Convert a type to a wrapped type.

Since: 0.4.0.0

type IsNewtype (a :: Type ) (x :: Type ) = ( IsWrappedType a x, Coercible a x) Source #

Constraint that captures that a datatype is a newtype. This makes use of the fact that newtypes are always coercible to the type they wrap, whereas datatypes are not.

Since: 0.3.1.0

newtypeFrom :: IsNewtype a x => a -> x Source #

Convert a newtype to its inner type.

This is a specialised synonym for coerce .

Since: 0.4.0.0

newtypeTo :: IsNewtype a x => x -> a Source #

Convert a type to a newtype.

This is a specialised synonym for coerce .

Since: 0.4.0.0

n-ary datatypes

data NP (a :: k -> Type ) (b :: [k]) where Source #

An n-ary product.

The product is parameterized by a type constructor f and indexed by a type-level list xs . The length of the list determines the number of elements in the product, and if the i -th element of the list is of type x , then the i -th element of the product is of type f x .

The constructor names are chosen to resemble the names of the list constructors.

Two common instantiations of f are the identity functor I and the constant functor K . For I , the product becomes a heterogeneous list, where the type-level list describes the types of its components. For K a , the product becomes a homogeneous list, where the contents of the type-level list are ignored, but its length still specifies the number of elements.

In the context of the SOP approach to generic programming, an n-ary product describes the structure of the arguments of a single data constructor.

Examples:

I 'x'    :* I True  :* Nil  ::  NP I       '[ Char, Bool ]
K 0      :* K 1     :* Nil  ::  NP (K Int) '[ Char, Bool ]
Just 'x' :* Nothing :* Nil  ::  NP Maybe   '[ Char, Bool ]

Constructors

Nil :: forall k (a :: k -> Type ). NP a ('[] :: [k])
(:*) :: forall k (a :: k -> Type ) (x :: k) (xs :: [k]). a x -> NP a xs -> NP a (x ': xs) infixr 5

Instances

Instances details
HTrans ( NP :: (k1 -> Type ) -> [k1] -> Type ) ( NP :: (k2 -> Type ) -> [k2] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod NP ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> NP f xs -> NP g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod NP ) ( LiftedCoercible f g) xs ys => NP f xs -> NP g ys Source #

HPure ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hpure :: forall (xs :: l) f. SListIN NP xs => ( forall (a :: k0). f a) -> NP f xs Source #

hcpure :: forall c (xs :: l) proxy f. AllN NP c xs => proxy c -> ( forall (a :: k0). c a => f a) -> NP f xs Source #

HAp ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod NP (f -.-> g) xs -> NP f xs -> NP g xs Source #

HCollapse ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hcollapse :: forall (xs :: l) a. SListIN NP xs => NP ( K a) xs -> CollapseTo NP a Source #

HTraverse_ ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN NP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> NP f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN NP xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> NP f xs -> g () Source #

HSequence ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN NP xs, Applicative f) => NP (f :.: g) xs -> f ( NP g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN NP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> NP f xs -> g ( NP f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN NP xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> NP f xs -> g ( NP f' xs) Source #

All ( Compose Eq f) xs => Eq ( NP f xs)
Instance details

Defined in Data.SOP.NP

( All ( Compose Eq f) xs, All ( Compose Ord f) xs) => Ord ( NP f xs)
Instance details

Defined in Data.SOP.NP

All ( Compose Show f) xs => Show ( NP f xs)
Instance details

Defined in Data.SOP.NP

All ( Compose Semigroup f) xs => Semigroup ( NP f xs)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.NP

( All ( Compose Monoid f) xs, All ( Compose Semigroup f) xs) => Monoid ( NP f xs)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.NP

All ( Compose NFData f) xs => NFData ( NP f xs)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.NP

Methods

rnf :: NP f xs -> () Source #

type AllZipN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: a -> b -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllZipN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: a -> b -> Constraint ) = AllZip c
type Same ( NP :: (k1 -> Type ) -> [k1] -> Type )
Instance details

Defined in Data.SOP.NP

type Same ( NP :: (k1 -> Type ) -> [k1] -> Type ) = NP :: (k2 -> Type ) -> [k2] -> Type
type Prod ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

type Prod ( NP :: (k -> Type ) -> [k] -> Type ) = NP :: (k -> Type ) -> [k] -> Type
type UnProd ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

type UnProd ( NP :: (k -> Type ) -> [k] -> Type ) = NS :: (k -> Type ) -> [k] -> Type
type SListIN ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

type SListIN ( NP :: (k -> Type ) -> [k] -> Type ) = SListI :: [k] -> Constraint
type CollapseTo ( NP :: (k -> Type ) -> [k] -> Type ) a
Instance details

Defined in Data.SOP.NP

type CollapseTo ( NP :: (k -> Type ) -> [k] -> Type ) a = [a]
type AllN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint ) = All c

data NS (a :: k -> Type ) (b :: [k]) where Source #

An n-ary sum.

The sum is parameterized by a type constructor f and indexed by a type-level list xs . The length of the list determines the number of choices in the sum and if the i -th element of the list is of type x , then the i -th choice of the sum is of type f x .

The constructor names are chosen to resemble Peano-style natural numbers, i.e., Z is for "zero", and S is for "successor". Chaining S and Z chooses the corresponding component of the sum.

Examples:

Z         :: f x -> NS f (x ': xs)
S . Z     :: f y -> NS f (x ': y ': xs)
S . S . Z :: f z -> NS f (x ': y ': z ': xs)
...

Note that empty sums (indexed by an empty list) have no non-bottom elements.

Two common instantiations of f are the identity functor I and the constant functor K . For I , the sum becomes a direct generalization of the Either type to arbitrarily many choices. For K a , the result is a homogeneous choice type, where the contents of the type-level list are ignored, but its length specifies the number of options.

In the context of the SOP approach to generic programming, an n-ary sum describes the top-level structure of a datatype, which is a choice between all of its constructors.

Examples:

Z (I 'x')      :: NS I       '[ Char, Bool ]
S (Z (I True)) :: NS I       '[ Char, Bool ]
S (Z (K 1))    :: NS (K Int) '[ Char, Bool ]

Constructors

Z :: forall k (a :: k -> Type ) (x :: k) (xs :: [k]). a x -> NS a (x ': xs)
S :: forall k (a :: k -> Type ) (xs :: [k]) (x :: k). NS a xs -> NS a (x ': xs)

Instances

Instances details
HTrans ( NS :: (k1 -> Type ) -> [k1] -> Type ) ( NS :: (k2 -> Type ) -> [k2] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod NS ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> NS f xs -> NS g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod NS ) ( LiftedCoercible f g) xs ys => NS f xs -> NS g ys Source #

HAp ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod NS (f -.-> g) xs -> NS f xs -> NS g xs Source #

HCollapse ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hcollapse :: forall (xs :: l) a. SListIN NS xs => NS ( K a) xs -> CollapseTo NS a Source #

HTraverse_ ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN NS c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> NS f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN NS xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> NS f xs -> g () Source #

HSequence ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN NS xs, Applicative f) => NS (f :.: g) xs -> f ( NS g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN NS c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> NS f xs -> g ( NS f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN NS xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> NS f xs -> g ( NS f' xs) Source #

HIndex ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hindex :: forall (f :: k0 -> Type ) (xs :: l). NS f xs -> Int Source #

HApInjs ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hapInjs :: forall (xs :: l) (f :: k0 -> Type ). SListIN NS xs => Prod NS f xs -> [ NS f xs] Source #

HExpand ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hexpand :: forall (xs :: l) f. SListIN ( Prod NS ) xs => ( forall (x :: k0). f x) -> NS f xs -> Prod NS f xs Source #

hcexpand :: forall c (xs :: l) proxy f. AllN ( Prod NS ) c xs => proxy c -> ( forall (x :: k0). c x => f x) -> NS f xs -> Prod NS f xs Source #

All ( Compose Eq f) xs => Eq ( NS f xs)
Instance details

Defined in Data.SOP.NS

( All ( Compose Eq f) xs, All ( Compose Ord f) xs) => Ord ( NS f xs)
Instance details

Defined in Data.SOP.NS

All ( Compose Show f) xs => Show ( NS f xs)
Instance details

Defined in Data.SOP.NS

All ( Compose NFData f) xs => NFData ( NS f xs)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.NS

Methods

rnf :: NS f xs -> () Source #

type Same ( NS :: (k1 -> Type ) -> [k1] -> Type )
Instance details

Defined in Data.SOP.NS

type Same ( NS :: (k1 -> Type ) -> [k1] -> Type ) = NS :: (k2 -> Type ) -> [k2] -> Type
type Prod ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

type Prod ( NS :: (k -> Type ) -> [k] -> Type ) = NP :: (k -> Type ) -> [k] -> Type
type SListIN ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

type SListIN ( NS :: (k -> Type ) -> [k] -> Type ) = SListI :: [k] -> Constraint
type CollapseTo ( NS :: (k -> Type ) -> [k] -> Type ) a
Instance details

Defined in Data.SOP.NS

type CollapseTo ( NS :: (k -> Type ) -> [k] -> Type ) a = a
type AllN ( NS :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NS

type AllN ( NS :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint ) = All c

newtype SOP (f :: k -> Type ) (xss :: [[k]]) Source #

A sum of products.

This is a 'newtype' for an NS of an NP . The elements of the (inner) products are applications of the parameter f . The type SOP is indexed by the list of lists that determines the sizes of both the (outer) sum and all the (inner) products, as well as the types of all the elements of the inner products.

A SOP I reflects the structure of a normal Haskell datatype. The sum structure represents the choice between the different constructors, the product structure represents the arguments of each constructor.

Constructors

SOP ( NS ( NP f) xss)

Instances

Instances details
HTrans ( SOP :: (k1 -> Type ) -> [[k1]] -> Type ) ( SOP :: (k2 -> Type ) -> [[k2]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod SOP ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> SOP f xs -> SOP g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod SOP ) ( LiftedCoercible f g) xs ys => SOP f xs -> SOP g ys Source #

HAp ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod SOP (f -.-> g) xs -> SOP f xs -> SOP g xs Source #

HCollapse ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hcollapse :: forall (xs :: l) a. SListIN SOP xs => SOP ( K a) xs -> CollapseTo SOP a Source #

HTraverse_ ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN SOP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> SOP f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN SOP xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> SOP f xs -> g () Source #

HSequence ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN SOP xs, Applicative f) => SOP (f :.: g) xs -> f ( SOP g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN SOP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> SOP f xs -> g ( SOP f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN SOP xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> SOP f xs -> g ( SOP f' xs) Source #

HIndex ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hindex :: forall (f :: k0 -> Type ) (xs :: l). SOP f xs -> Int Source #

HApInjs ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hapInjs :: forall (xs :: l) (f :: k0 -> Type ). SListIN SOP xs => Prod SOP f xs -> [ SOP f xs] Source #

HExpand ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hexpand :: forall (xs :: l) f. SListIN ( Prod SOP ) xs => ( forall (x :: k0). f x) -> SOP f xs -> Prod SOP f xs Source #

hcexpand :: forall c (xs :: l) proxy f. AllN ( Prod SOP ) c xs => proxy c -> ( forall (x :: k0). c x => f x) -> SOP f xs -> Prod SOP f xs Source #

Eq ( NS ( NP f) xss) => Eq ( SOP f xss)
Instance details

Defined in Data.SOP.NS

Ord ( NS ( NP f) xss) => Ord ( SOP f xss)
Instance details

Defined in Data.SOP.NS

Show ( NS ( NP f) xss) => Show ( SOP f xss)
Instance details

Defined in Data.SOP.NS

NFData ( NS ( NP f) xss) => NFData ( SOP f xss)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.NS

Methods

rnf :: SOP f xss -> () Source #

type Same ( SOP :: (k1 -> Type ) -> [[k1]] -> Type )
Instance details

Defined in Data.SOP.NS

type Same ( SOP :: (k1 -> Type ) -> [[k1]] -> Type ) = SOP :: (k2 -> Type ) -> [[k2]] -> Type
type Prod ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

type Prod ( SOP :: (k -> Type ) -> [[k]] -> Type ) = POP :: (k -> Type ) -> [[k]] -> Type
type SListIN ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

type SListIN ( SOP :: (k -> Type ) -> [[k]] -> Type ) = SListI2 :: [[k]] -> Constraint
type CollapseTo ( SOP :: (k -> Type ) -> [[k]] -> Type ) a
Instance details

Defined in Data.SOP.NS

type CollapseTo ( SOP :: (k -> Type ) -> [[k]] -> Type ) a = [a]
type AllN ( SOP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NS

type AllN ( SOP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint ) = All2 c

unSOP :: forall k (f :: k -> Type ) (xss :: [[k]]). SOP f xss -> NS ( NP f) xss Source #

Unwrap a sum of products.

newtype POP (f :: k -> Type ) (xss :: [[k]]) Source #

A product of products.

This is a 'newtype' for an NP of an NP . The elements of the inner products are applications of the parameter f . The type POP is indexed by the list of lists that determines the lengths of both the outer and all the inner products, as well as the types of all the elements of the inner products.

A POP is reminiscent of a two-dimensional table (but the inner lists can all be of different length). In the context of the SOP approach to generic programming, a POP is useful to represent information that is available for all arguments of all constructors of a datatype.

Constructors

POP ( NP ( NP f) xss)

Instances

Instances details
HTrans ( POP :: (k1 -> Type ) -> [[k1]] -> Type ) ( POP :: (k2 -> Type ) -> [[k2]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod POP ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> POP f xs -> POP g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod POP ) ( LiftedCoercible f g) xs ys => POP f xs -> POP g ys Source #

HPure ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hpure :: forall (xs :: l) f. SListIN POP xs => ( forall (a :: k0). f a) -> POP f xs Source #

hcpure :: forall c (xs :: l) proxy f. AllN POP c xs => proxy c -> ( forall (a :: k0). c a => f a) -> POP f xs Source #

HAp ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod POP (f -.-> g) xs -> POP f xs -> POP g xs Source #

HCollapse ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hcollapse :: forall (xs :: l) a. SListIN POP xs => POP ( K a) xs -> CollapseTo POP a Source #

HTraverse_ ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN POP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> POP f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN POP xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> POP f xs -> g () Source #

HSequence ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN POP xs, Applicative f) => POP (f :.: g) xs -> f ( POP g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN POP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> POP f xs -> g ( POP f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN POP xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> POP f xs -> g ( POP f' xs) Source #

Eq ( NP ( NP f) xss) => Eq ( POP f xss)
Instance details

Defined in Data.SOP.NP

Ord ( NP ( NP f) xss) => Ord ( POP f xss)
Instance details

Defined in Data.SOP.NP

Show ( NP ( NP f) xss) => Show ( POP f xss)
Instance details

Defined in Data.SOP.NP

Semigroup ( NP ( NP f) xss) => Semigroup ( POP f xss)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.NP

Monoid ( NP ( NP f) xss) => Monoid ( POP f xss)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.NP

NFData ( NP ( NP f) xss) => NFData ( POP f xss)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.NP

Methods

rnf :: POP f xss -> () Source #

type AllZipN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: a -> b -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllZipN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: a -> b -> Constraint ) = AllZip2 c
type Same ( POP :: (k1 -> Type ) -> [[k1]] -> Type )
Instance details

Defined in Data.SOP.NP

type Same ( POP :: (k1 -> Type ) -> [[k1]] -> Type ) = POP :: (k2 -> Type ) -> [[k2]] -> Type
type Prod ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

type Prod ( POP :: (k -> Type ) -> [[k]] -> Type ) = POP :: (k -> Type ) -> [[k]] -> Type
type UnProd ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

type UnProd ( POP :: (k -> Type ) -> [[k]] -> Type ) = SOP :: (k -> Type ) -> [[k]] -> Type
type SListIN ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

type SListIN ( POP :: (k -> Type ) -> [[k]] -> Type ) = SListI2 :: [[k]] -> Constraint
type CollapseTo ( POP :: (k -> Type ) -> [[k]] -> Type ) a
Instance details

Defined in Data.SOP.NP

type CollapseTo ( POP :: (k -> Type ) -> [[k]] -> Type ) a = [[a]]
type AllN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint ) = All2 c

unPOP :: forall k (f :: k -> Type ) (xss :: [[k]]). POP f xss -> NP ( NP f) xss Source #

Unwrap a product of products.

Metadata

data DatatypeInfo :: [[ Type ]] -> Type where Source #

Metadata for a datatype.

A value of type DatatypeInfo c contains the information about a datatype that is not contained in Code c . This information consists primarily of the names of the datatype, its constructors, and possibly its record selectors.

The constructor indicates whether the datatype has been declared using newtype or not.

moduleName :: DatatypeInfo xss -> ModuleName Source #

The module name where a datatype is defined.

Since: 0.2.3.0

datatypeName :: DatatypeInfo xss -> DatatypeName Source #

The name of a datatype (or newtype).

Since: 0.2.3.0

constructorInfo :: DatatypeInfo xss -> NP ConstructorInfo xss Source #

The constructor info for a datatype (or newtype).

Since: 0.2.3.0

data ConstructorInfo :: [ Type ] -> Type where Source #

Metadata for a single constructor.

This is indexed by the product structure of the constructor components.

constructorName :: ConstructorInfo xs -> ConstructorName Source #

The name of a constructor.

Since: 0.2.3.0

fieldName :: FieldInfo a -> FieldName Source #

The name of a field.

Since: 0.2.3.0

class Generic a => HasDatatypeInfo a where Source #

A class of datatypes that have associated metadata.

It is possible to use the sum-of-products approach to generic programming without metadata. If you need metadata in a function, an additional constraint on this class is in order.

You typically don't define instances of this class by hand, but rather derive the class instance automatically. See the documentation of Generic for the options.

Minimal complete definition

Nothing

Associated Types

type DatatypeInfoOf a :: DatatypeInfo Source #

Type-level datatype info

Methods

datatypeInfo :: proxy a -> DatatypeInfo ( Code a) Source #

Term-level datatype info; by default, the term-level datatype info is produced from the type-level info.

Instances

Instances details
HasDatatypeInfo Bool Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Ordering Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo RuntimeRep Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo VecCount Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo VecElem Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo R Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo D Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo C Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo S Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CallStack Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo () Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo E0 Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo E1 Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo E2 Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo E3 Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo E6 Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo E9 Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo E12 Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Void Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo SpecConstrAnnotation Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo DataRep Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ConstrRep Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Fixity Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo SrcLoc Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Location Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo GiveGCStats Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo GCFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ConcFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo MiscFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo DebugFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo DoCostCentres Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CCFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo DoHeapProfile Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ProfFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo DoTrace Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo TraceFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo TickyFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ParFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo RTSFlags Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo RTSStats Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo GCDetails Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ByteOrder Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo StaticPtrInfo Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo FormatAdjustment Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo FormatSign Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo FieldFormat Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo FormatParse Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Version Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo HandlePosn Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo PatternMatchFail Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo RecSelError Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo RecConError Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo RecUpdError Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo NoMethodError Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo TypeError Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo NonTermination Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo NestedAtomically Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo BlockReason Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ThreadStatus Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Errno Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CodingFailureMode Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo BlockedIndefinitelyOnMVar Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo BlockedIndefinitelyOnSTM Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Deadlock Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo AllocationLimitExceeded Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo AssertionFailed Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo AsyncException Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ArrayException Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo FixIOException Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ExitCode Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo IOErrorType Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo BufferMode Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Newline Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo NewlineMode Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo IODeviceType Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo SeekMode Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CodingProgress Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo BufferState Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo MaskingState Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo IOException Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo LockMode Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ErrorCall Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ArithException Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo All Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Any Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Fixity Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Associativity Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo SourceUnpackedness Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo SourceStrictness Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo DecidedStrictness Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CChar Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CSChar Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CUChar Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CShort Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CUShort Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CInt Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CUInt Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CLong Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CULong Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CLLong Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CULLong Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CFloat Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CDouble Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CPtrdiff Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CSize Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CWchar Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CSigAtomic Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CClock Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CTime Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CUSeconds Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CSUSeconds Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CIntPtr Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CUIntPtr Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CIntMax Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo CUIntMax Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo IOMode Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Fingerprint Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Lexeme Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo Number Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo FFFormat Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo GeneralCategory Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo SrcLoc Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo [a] Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Maybe a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Par1 p) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Complex a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Min a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Max a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( First a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Last a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( WrappedMonoid m) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Option a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( ArgOrder a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( OptDescr a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( ArgDescr a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Identity a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Buffer e) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( First a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Last a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Dual a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Endo a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Sum a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Product a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Down a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( NonEmpty a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( I a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Either a b) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( V1 p) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( U1 p) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo (a, b) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b) -> DatatypeInfo ( Code (a, b)) Source #

HasDatatypeInfo ( Fixed a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Arg a b) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Proxy t) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo (a, b, c) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c) -> DatatypeInfo ( Code (a, b, c)) Source #

HasDatatypeInfo ( BufferCodec from to state) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ( BufferCodec from to state) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy ( BufferCodec from to state) -> DatatypeInfo ( Code ( BufferCodec from to state)) Source #

HasDatatypeInfo ( Const a b) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Alt f a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( K a b) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( K1 i c p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ( K1 i c p) :: DatatypeInfo Source #

HasDatatypeInfo ((f :+: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ((f :+: g) p) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy ((f :+: g) p) -> DatatypeInfo ( Code ((f :+: g) p)) Source #

HasDatatypeInfo ((f :*: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ((f :*: g) p) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy ((f :*: g) p) -> DatatypeInfo ( Code ((f :*: g) p)) Source #

HasDatatypeInfo (a, b, c, d) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d) -> DatatypeInfo ( Code (a, b, c, d)) Source #

HasDatatypeInfo ( Product f g a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( Sum f g a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ((f -.-> g) a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ( M1 i c f p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ( M1 i c f p) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy ( M1 i c f p) -> DatatypeInfo ( Code ( M1 i c f p)) Source #

HasDatatypeInfo ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ((f :.: g) p) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy ((f :.: g) p) -> DatatypeInfo ( Code ((f :.: g) p)) Source #

HasDatatypeInfo (a, b, c, d, e) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e) -> DatatypeInfo ( Code (a, b, c, d, e)) Source #

HasDatatypeInfo ( Compose f g a) Source #
Instance details

Defined in Generics.SOP.Instances

HasDatatypeInfo ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ((f :.: g) p) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy ((f :.: g) p) -> DatatypeInfo ( Code ((f :.: g) p)) Source #

HasDatatypeInfo (a, b, c, d, e, f) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f) -> DatatypeInfo ( Code (a, b, c, d, e, f)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g) -> DatatypeInfo ( Code (a, b, c, d, e, f, g)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28)) Source #

HasDatatypeInfo (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29) -> DatatypeInfo ( Code (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t26, t27, t28, t29)) Source #

type DatatypeName = String Source #

The name of a datatype.

type ModuleName = String Source #

The name of a module.

type ConstructorName = String Source #

The name of a data constructor.

type FieldName = String Source #

The name of a field / record selector.

data Associativity Source #

Datatype to represent the associativity of a constructor

Instances

Instances details
Bounded Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Eq Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Data Associativity

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g. g -> c g) -> Associativity -> c Associativity Source #

gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c Associativity Source #

toConstr :: Associativity -> Constr Source #

dataTypeOf :: Associativity -> DataType Source #

dataCast1 :: Typeable t => ( forall d. Data d => c (t d)) -> Maybe (c Associativity ) Source #

dataCast2 :: Typeable t => ( forall d e. ( Data d, Data e) => c (t d e)) -> Maybe (c Associativity ) Source #

gmapT :: ( forall b. Data b => b -> b) -> Associativity -> Associativity Source #

gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> Associativity -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> Associativity -> r Source #

gmapQ :: ( forall d. Data d => d -> u) -> Associativity -> [u] Source #

gmapQi :: Int -> ( forall d. Data d => d -> u) -> Associativity -> u Source #

gmapM :: Monad m => ( forall d. Data d => d -> m d) -> Associativity -> m Associativity Source #

gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> Associativity -> m Associativity Source #

gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> Associativity -> m Associativity Source #

Ord Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Read Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Show Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Ix Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Generic Associativity

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

SingKind Associativity

Since: base-4.0.0.0

Instance details

Defined in GHC.Generics

Associated Types

type DemoteRep Associativity

Methods

fromSing :: forall (a :: Associativity ). Sing a -> DemoteRep Associativity

HasDatatypeInfo Associativity Source #
Instance details

Defined in Generics.SOP.Instances

Generic Associativity Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code Associativity :: [[ Type ]] Source #

SingI ' LeftAssociative

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

sing :: Sing ' LeftAssociative

SingI ' RightAssociative

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

sing :: Sing ' RightAssociative

SingI ' NotAssociative

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

sing :: Sing ' NotAssociative

type Rep Associativity
Instance details

Defined in GHC.Generics

type Rep Associativity = D1 (' MetaData "Associativity" "GHC.Generics" "base" ' False ) ( C1 (' MetaCons "LeftAssociative" ' PrefixI ' False ) ( U1 :: Type -> Type ) :+: ( C1 (' MetaCons "RightAssociative" ' PrefixI ' False ) ( U1 :: Type -> Type ) :+: C1 (' MetaCons "NotAssociative" ' PrefixI ' False ) ( U1 :: Type -> Type )))
type DemoteRep Associativity
Instance details

Defined in GHC.Generics

data Sing (a :: Associativity )
Instance details

Defined in GHC.Generics

type DatatypeInfoOf Associativity Source #
Instance details

Defined in Generics.SOP.Instances

type DatatypeInfoOf Associativity = ' ADT "GHC.Generics" "Associativity" '[' Constructor "LeftAssociative", ' Constructor "RightAssociative", ' Constructor "NotAssociative"] '['[] :: [ StrictnessInfo ], '[] :: [ StrictnessInfo ], '[] :: [ StrictnessInfo ]]
type Code Associativity Source #
Instance details

Defined in Generics.SOP.Instances

type Code Associativity = '['[] :: [ Type ], '[] :: [ Type ], '[] :: [ Type ]]

type Fixity = Int Source #

The fixity of an infix constructor.

Combinators

Constructing products

class HPure (h :: (k -> Type ) -> l -> Type ) where Source #

A generalization of pure or return to higher kinds.

Methods

hpure :: forall (xs :: l) f. SListIN h xs => ( forall (a :: k). f a) -> h f xs Source #

Corresponds to pure directly.

Instances:

hpure, pure_NP  :: SListI  xs  => (forall a. f a) -> NP  f xs
hpure, pure_POP :: SListI2 xss => (forall a. f a) -> POP f xss

hcpure :: forall c (xs :: l) proxy f. AllN h c xs => proxy c -> ( forall (a :: k). c a => f a) -> h f xs Source #

A variant of hpure that allows passing in a constrained argument.

Calling hcpure f s where s :: h f xs causes f to be applied at all the types that are contained in xs . Therefore, the constraint c has to be satisfied for all elements of xs , which is what AllN h c xs states.

Instances:

hcpure, cpure_NP  :: (All  c xs ) => proxy c -> (forall a. c a => f a) -> NP  f xs
hcpure, cpure_POP :: (All2 c xss) => proxy c -> (forall a. c a => f a) -> POP f xss

Instances

Instances details
HPure ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hpure :: forall (xs :: l) f. SListIN POP xs => ( forall (a :: k0). f a) -> POP f xs Source #

hcpure :: forall c (xs :: l) proxy f. AllN POP c xs => proxy c -> ( forall (a :: k0). c a => f a) -> POP f xs Source #

HPure ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hpure :: forall (xs :: l) f. SListIN NP xs => ( forall (a :: k0). f a) -> NP f xs Source #

hcpure :: forall c (xs :: l) proxy f. AllN NP c xs => proxy c -> ( forall (a :: k0). c a => f a) -> NP f xs Source #

Destructing products

hd :: forall k f (x :: k) (xs :: [k]). NP f (x ': xs) -> f x Source #

Obtain the head of an n-ary product.

Since: sop-core-0.2.1.0

tl :: forall k (f :: k -> Type ) (x :: k) (xs :: [k]). NP f (x ': xs) -> NP f xs Source #

Obtain the tail of an n-ary product.

Since: sop-core-0.2.1.0

type Projection (f :: k -> Type ) (xs :: [k]) = ( K ( NP f xs) :: k -> Type ) -.-> f Source #

The type of projections from an n-ary product.

A projection is a function from the n-ary product to a single element.

projections :: forall k (xs :: [k]) (f :: k -> Type ). SListI xs => NP ( Projection f xs) xs Source #

Compute all projections from an n-ary product.

Each element of the resulting product contains one of the projections.

shiftProjection :: forall a1 (f :: a1 -> Type ) (xs :: [a1]) (a2 :: a1) (x :: a1). Projection f xs a2 -> Projection f (x ': xs) a2 Source #

Application

newtype ((f :: k -> Type ) -.-> (g :: k -> Type )) (a :: k) infixr 1 Source #

Lifted functions.

Constructors

Fn

Fields

Instances

Instances details
HasDatatypeInfo ((f -.-> g) a) Source #
Instance details

Defined in Generics.SOP.Instances

Generic ((f -.-> g) a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ((f -.-> g) a) :: [[ Type ]] Source #

Methods

from :: (f -.-> g) a -> Rep ((f -.-> g) a) Source #

to :: Rep ((f -.-> g) a) -> (f -.-> g) a Source #

type DatatypeInfoOf ((f -.-> g) a) Source #
Instance details

Defined in Generics.SOP.Instances

type DatatypeInfoOf ((f -.-> g) a) = ' Newtype "Data.SOP.Classes" "-.->" (' Record "Fn" '[' FieldInfo "apFn"])
type Code ((f -.-> g) a) Source #
Instance details

Defined in Generics.SOP.Instances

type Code ((f -.-> g) a) = '['[f a -> g a]]

fn :: forall k f (a :: k) f'. (f a -> f' a) -> (f -.-> f') a Source #

Construct a lifted function.

Same as Fn . Only available for uniformity with the higher-arity versions.

fn_2 :: forall k f (a :: k) f' f''. (f a -> f' a -> f'' a) -> (f -.-> (f' -.-> f'')) a Source #

Construct a binary lifted function.

fn_3 :: forall k f (a :: k) f' f'' f'''. (f a -> f' a -> f'' a -> f''' a) -> (f -.-> (f' -.-> (f'' -.-> f'''))) a Source #

Construct a ternary lifted function.

fn_4 :: forall k f (a :: k) f' f'' f''' f''''. (f a -> f' a -> f'' a -> f''' a -> f'''' a) -> (f -.-> (f' -.-> (f'' -.-> (f''' -.-> f'''')))) a Source #

Construct a quarternary lifted function.

type family Prod (h :: (k -> Type ) -> l -> Type ) :: (k -> Type ) -> l -> Type Source #

Maps a structure containing sums to the corresponding product structure.

Instances

Instances details
type Prod ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

type Prod ( NS :: (k -> Type ) -> [k] -> Type ) = NP :: (k -> Type ) -> [k] -> Type
type Prod ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

type Prod ( SOP :: (k -> Type ) -> [[k]] -> Type ) = POP :: (k -> Type ) -> [[k]] -> Type
type Prod ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

type Prod ( NP :: (k -> Type ) -> [k] -> Type ) = NP :: (k -> Type ) -> [k] -> Type
type Prod ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

type Prod ( POP :: (k -> Type ) -> [[k]] -> Type ) = POP :: (k -> Type ) -> [[k]] -> Type

class ( Prod ( Prod h) ~ Prod h, HPure ( Prod h)) => HAp (h :: (k -> Type ) -> l -> Type ) where Source #

A generalization of <*> .

Methods

hap :: forall (f :: k -> Type ) (g :: k -> Type ) (xs :: l). Prod h (f -.-> g) xs -> h f xs -> h g xs Source #

Corresponds to <*> .

For products ( NP ) as well as products of products ( POP ), the correspondence is rather direct. We combine a structure containing (lifted) functions and a compatible structure containing corresponding arguments into a compatible structure containing results.

The same combinator can also be used to combine a product structure of functions with a sum structure of arguments, which then results in another sum structure of results. The sum structure determines which part of the product structure will be used.

Instances:

hap, ap_NP  :: NP  (f -.-> g) xs  -> NP  f xs  -> NP  g xs
hap, ap_NS  :: NP  (f -.-> g) xs  -> NS  f xs  -> NS  g xs
hap, ap_POP :: POP (f -.-> g) xss -> POP f xss -> POP g xss
hap, ap_SOP :: POP (f -.-> g) xss -> SOP f xss -> SOP g xss

Instances

Instances details
HAp ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod SOP (f -.-> g) xs -> SOP f xs -> SOP g xs Source #

HAp ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod NS (f -.-> g) xs -> NS f xs -> NS g xs Source #

HAp ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod POP (f -.-> g) xs -> POP f xs -> POP g xs Source #

HAp ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hap :: forall (f :: k0 -> Type ) (g :: k0 -> Type ) (xs :: l). Prod NP (f -.-> g) xs -> NP f xs -> NP g xs Source #

Lifting / mapping

hliftA :: forall k l h (xs :: l) f f'. ( SListIN ( Prod h) xs, HAp h) => ( forall (a :: k). f a -> f' a) -> h f xs -> h f' xs Source #

A generalized form of liftA , which in turn is a generalized map .

Takes a lifted function and applies it to every element of a structure while preserving its shape.

Specification:

hliftA f xs = hpure (fn f) ` hap ` xs

Instances:

hliftA, liftA_NP  :: SListI  xs  => (forall a. f a -> f' a) -> NP  f xs  -> NP  f' xs
hliftA, liftA_NS  :: SListI  xs  => (forall a. f a -> f' a) -> NS  f xs  -> NS  f' xs
hliftA, liftA_POP :: SListI2 xss => (forall a. f a -> f' a) -> POP f xss -> POP f' xss
hliftA, liftA_SOP :: SListI2 xss => (forall a. f a -> f' a) -> SOP f xss -> SOP f' xss

hliftA2 :: forall k l h (xs :: l) f f' f''. ( SListIN ( Prod h) xs, HAp h, HAp ( Prod h)) => ( forall (a :: k). f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs Source #

A generalized form of liftA2 , which in turn is a generalized zipWith .

Takes a lifted binary function and uses it to combine two structures of equal shape into a single structure.

It either takes two product structures to a product structure, or one product and one sum structure to a sum structure.

Specification:

hliftA2 f xs ys = hpure (fn_2 f) ` hap ` xs ` hap ` ys

Instances:

hliftA2, liftA2_NP  :: SListI  xs  => (forall a. f a -> f' a -> f'' a) -> NP  f xs  -> NP  f' xs  -> NP  f'' xs
hliftA2, liftA2_NS  :: SListI  xs  => (forall a. f a -> f' a -> f'' a) -> NP  f xs  -> NS  f' xs  -> NS  f'' xs
hliftA2, liftA2_POP :: SListI2 xss => (forall a. f a -> f' a -> f'' a) -> POP f xss -> POP f' xss -> POP f'' xss
hliftA2, liftA2_SOP :: SListI2 xss => (forall a. f a -> f' a -> f'' a) -> POP f xss -> SOP f' xss -> SOP f'' xss

hliftA3 :: forall k l h (xs :: l) f f' f'' f'''. ( SListIN ( Prod h) xs, HAp h, HAp ( Prod h)) => ( forall (a :: k). f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs Source #

A generalized form of liftA3 , which in turn is a generalized zipWith3 .

Takes a lifted ternary function and uses it to combine three structures of equal shape into a single structure.

It either takes three product structures to a product structure, or two product structures and one sum structure to a sum structure.

Specification:

hliftA3 f xs ys zs = hpure (fn_3 f) ` hap ` xs ` hap ` ys ` hap ` zs

Instances:

hliftA3, liftA3_NP  :: SListI  xs  => (forall a. f a -> f' a -> f'' a -> f''' a) -> NP  f xs  -> NP  f' xs  -> NP  f'' xs  -> NP  f''' xs
hliftA3, liftA3_NS  :: SListI  xs  => (forall a. f a -> f' a -> f'' a -> f''' a) -> NP  f xs  -> NP  f' xs  -> NS  f'' xs  -> NS  f''' xs
hliftA3, liftA3_POP :: SListI2 xss => (forall a. f a -> f' a -> f'' a -> f''' a) -> POP f xss -> POP f' xss -> POP f'' xss -> POP f''' xs
hliftA3, liftA3_SOP :: SListI2 xss => (forall a. f a -> f' a -> f'' a -> f''' a) -> POP f xss -> POP f' xss -> SOP f'' xss -> SOP f''' xs

hcliftA :: forall k l h c (xs :: l) proxy f f'. ( AllN ( Prod h) c xs, HAp h) => proxy c -> ( forall (a :: k). c a => f a -> f' a) -> h f xs -> h f' xs Source #

Variant of hliftA that takes a constrained function.

Specification:

hcliftA p f xs = hcpure p (fn f) ` hap ` xs

hcliftA2 :: forall k l h c (xs :: l) proxy f f' f''. ( AllN ( Prod h) c xs, HAp h, HAp ( Prod h)) => proxy c -> ( forall (a :: k). c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs Source #

Variant of hliftA2 that takes a constrained function.

Specification:

hcliftA2 p f xs ys = hcpure p (fn_2 f) ` hap ` xs ` hap ` ys

hcliftA3 :: forall k l h c (xs :: l) proxy f f' f'' f'''. ( AllN ( Prod h) c xs, HAp h, HAp ( Prod h)) => proxy c -> ( forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs Source #

Variant of hliftA3 that takes a constrained function.

Specification:

hcliftA3 p f xs ys zs = hcpure p (fn_3 f) ` hap ` xs ` hap ` ys ` hap ` zs

hmap :: forall k l h (xs :: l) f f'. ( SListIN ( Prod h) xs, HAp h) => ( forall (a :: k). f a -> f' a) -> h f xs -> h f' xs Source #

Another name for hliftA .

Since: sop-core-0.2

hzipWith :: forall k l h (xs :: l) f f' f''. ( SListIN ( Prod h) xs, HAp h, HAp ( Prod h)) => ( forall (a :: k). f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs Source #

Another name for hliftA2 .

Since: sop-core-0.2

hzipWith3 :: forall k l h (xs :: l) f f' f'' f'''. ( SListIN ( Prod h) xs, HAp h, HAp ( Prod h)) => ( forall (a :: k). f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs Source #

Another name for hliftA3 .

Since: sop-core-0.2

hcmap :: forall k l h c (xs :: l) proxy f f'. ( AllN ( Prod h) c xs, HAp h) => proxy c -> ( forall (a :: k). c a => f a -> f' a) -> h f xs -> h f' xs Source #

Another name for hcliftA .

Since: sop-core-0.2

hczipWith :: forall k l h c (xs :: l) proxy f f' f''. ( AllN ( Prod h) c xs, HAp h, HAp ( Prod h)) => proxy c -> ( forall (a :: k). c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs Source #

Another name for hcliftA2 .

Since: sop-core-0.2

hczipWith3 :: forall k l h c (xs :: l) proxy f f' f'' f'''. ( AllN ( Prod h) c xs, HAp h, HAp ( Prod h)) => proxy c -> ( forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs Source #

Another name for hcliftA3 .

Since: sop-core-0.2

Constructing sums

type Injection (f :: k -> Type ) (xs :: [k]) = f -.-> ( K ( NS f xs) :: k -> Type ) Source #

The type of injections into an n-ary sum.

If you expand the type synonyms and newtypes involved, you get

Injection f xs a = (f -.-> K (NS f xs)) a ~= f a -> K (NS f xs) a ~= f a -> NS f xs

If we pick a to be an element of xs , this indeed corresponds to an injection into the sum.

injections :: forall k (xs :: [k]) (f :: k -> Type ). SListI xs => NP ( Injection f xs) xs Source #

Compute all injections into an n-ary sum.

Each element of the resulting product contains one of the injections.

shift :: forall a1 (f :: a1 -> Type ) (xs :: [a1]) (a2 :: a1) (x :: a1). Injection f xs a2 -> Injection f (x ': xs) a2 Source #

Shift an injection.

Given an injection, return an injection into a sum that is one component larger.

shiftInjection :: forall a1 (f :: a1 -> Type ) (xs :: [a1]) (a2 :: a1) (x :: a1). Injection f xs a2 -> Injection f (x ': xs) a2 Source #

Shift an injection.

Given an injection, return an injection into a sum that is one component larger.

type family UnProd (h :: (k -> Type ) -> l -> Type ) :: (k -> Type ) -> l -> Type Source #

Maps a structure containing products to the corresponding sum structure.

Since: sop-core-0.2.4.0

Instances

Instances details
type UnProd ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

type UnProd ( NP :: (k -> Type ) -> [k] -> Type ) = NS :: (k -> Type ) -> [k] -> Type
type UnProd ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

type UnProd ( POP :: (k -> Type ) -> [[k]] -> Type ) = SOP :: (k -> Type ) -> [[k]] -> Type

class UnProd ( Prod h) ~ h => HApInjs (h :: (k -> Type ) -> l -> Type ) where Source #

A class for applying all injections corresponding to a sum-like structure to a table containing suitable arguments.

Methods

hapInjs :: forall (xs :: l) (f :: k -> Type ). SListIN h xs => Prod h f xs -> [h f xs] Source #

For a given table (product-like structure), produce a list where each element corresponds to the application of an injection function into the corresponding sum-like structure.

Instances:

hapInjs, apInjs_NP  :: SListI  xs  => NP  f xs -> [NS  f xs ]
hapInjs, apInjs_SOP :: SListI2 xss => POP f xs -> [SOP f xss]

Examples:

>>> hapInjs (I 'x' :* I True :* I 2 :* Nil) :: [NS I '[Char, Bool, Int]]
[Z (I 'x'),S (Z (I True)),S (S (Z (I 2)))]
>>> hapInjs (POP ((I 'x' :* Nil) :* (I True :* I 2 :* Nil) :* Nil)) :: [SOP I '[ '[Char], '[Bool, Int]]]
[SOP (Z (I 'x' :* Nil)),SOP (S (Z (I True :* I 2 :* Nil)))]

Unfortunately the type-signatures are required in GHC-7.10 and older.

Since: sop-core-0.2.4.0

Instances

Instances details
HApInjs ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hapInjs :: forall (xs :: l) (f :: k0 -> Type ). SListIN SOP xs => Prod SOP f xs -> [ SOP f xs] Source #

HApInjs ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hapInjs :: forall (xs :: l) (f :: k0 -> Type ). SListIN NS xs => Prod NS f xs -> [ NS f xs] Source #

apInjs_NP :: forall k (xs :: [k]) (f :: k -> Type ). SListI xs => NP f xs -> [ NS f xs] Source #

Apply injections to a product.

Given a product containing all possible choices, produce a list of sums by applying each injection to the appropriate element.

Example:

>>> apInjs_NP (I 'x' :* I True :* I 2 :* Nil)
[Z (I 'x'),S (Z (I True)),S (S (Z (I 2)))]

apInjs_POP :: forall k (xss :: [[k]]) (f :: k -> Type ). SListI xss => POP f xss -> [ SOP f xss] Source #

Apply injections to a product of product.

This operates on the outer product only. Given a product containing all possible choices (that are products), produce a list of sums (of products) by applying each injection to the appropriate element.

Example:

>>> apInjs_POP (POP ((I 'x' :* Nil) :* (I True :* I 2 :* Nil) :* Nil))
[SOP (Z (I 'x' :* Nil)),SOP (S (Z (I True :* I 2 :* Nil)))]

Destructing sums

unZ :: forall k f (x :: k). NS f '[x] -> f x Source #

Extract the payload from a unary sum.

For larger sums, this function would be partial, so it is only provided with a rather restrictive type.

Example:

>>> unZ (Z (I 'x'))
I 'x'

Since: sop-core-0.2.2.0

class HIndex (h :: (k -> Type ) -> l -> Type ) where Source #

A class for determining which choice in a sum-like structure a value represents.

Methods

hindex :: forall (f :: k -> Type ) (xs :: l). h f xs -> Int Source #

If h is a sum-like structure representing a choice between n different options, and x is a value of type h f xs , then hindex x returns a number between 0 and n - 1 representing the index of the choice made by x .

Instances:

hindex, index_NS  :: NS  f xs -> Int
hindex, index_SOP :: SOP f xs -> Int

Examples:

>>> hindex (S (S (Z (I False))))
2
>>> hindex (Z (K ()))
0
>>> hindex (SOP (S (Z (I True :* I 'x' :* Nil))))
1

Since: sop-core-0.2.4.0

Instances

Instances details
HIndex ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hindex :: forall (f :: k0 -> Type ) (xs :: l). SOP f xs -> Int Source #

HIndex ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hindex :: forall (f :: k0 -> Type ) (xs :: l). NS f xs -> Int Source #

type Ejection (f :: k -> Type ) (xs :: [k]) = ( K ( NS f xs) :: k -> Type ) -.-> ( Maybe :.: f) Source #

The type of ejections from an n-ary sum.

An ejection is the pattern matching function for one part of the n-ary sum.

It is the opposite of an Injection .

Since: sop-core-0.5.0.0

ejections :: forall k (xs :: [k]) (f :: k -> Type ). SListI xs => NP ( Ejection f xs) xs Source #

Compute all ejections from an n-ary sum.

Each element of the resulting product contains one of the ejections.

Since: sop-core-0.5.0.0

shiftEjection :: forall a1 (f :: a1 -> Type ) (x :: a1) (xs :: [a1]) (a2 :: a1). Ejection f xs a2 -> Ejection f (x ': xs) a2 Source #

Since: sop-core-0.5.0.0

Dealing with All c

hcliftA' :: forall k (c :: k -> Constraint ) (xss :: [[k]]) h proxy f f'. ( All2 c xss, Prod h ~ ( NP :: ([k] -> Type ) -> [[k]] -> Type ), HAp h) => proxy c -> ( forall (xs :: [k]). All c xs => f xs -> f' xs) -> h f xss -> h f' xss Source #

Lift a constrained function operating on a list-indexed structure to a function on a list-of-list-indexed structure.

This is a variant of hcliftA .

Specification:

hcliftA' p f xs = hpure (fn_2 $ \ AllDictC -> f) ` hap ` allDict_NP p ` hap ` xs

Instances:

hcliftA' :: All2 c xss => proxy c -> (forall xs. All c xs => f xs -> f' xs) -> NP f xss -> NP f' xss
hcliftA' :: All2 c xss => proxy c -> (forall xs. All c xs => f xs -> f' xs) -> NS f xss -> NS f' xss

hcliftA2' :: forall k (c :: k -> Constraint ) (xss :: [[k]]) h proxy f f' f''. ( All2 c xss, Prod h ~ ( NP :: ([k] -> Type ) -> [[k]] -> Type ), HAp h) => proxy c -> ( forall (xs :: [k]). All c xs => f xs -> f' xs -> f'' xs) -> Prod h f xss -> h f' xss -> h f'' xss Source #

Like hcliftA' , but for binary functions.

hcliftA3' :: forall k (c :: k -> Constraint ) (xss :: [[k]]) h proxy f f' f'' f'''. ( All2 c xss, Prod h ~ ( NP :: ([k] -> Type ) -> [[k]] -> Type ), HAp h) => proxy c -> ( forall (xs :: [k]). All c xs => f xs -> f' xs -> f'' xs -> f''' xs) -> Prod h f xss -> Prod h f' xss -> h f'' xss -> h f''' xss Source #

Like hcliftA' , but for ternary functions.

Comparison

compare_NS Source #

Arguments

:: forall k r f g (xs :: [k]). r

what to do if first is smaller

-> ( forall (x :: k). f x -> g x -> r)

what to do if both are equal

-> r

what to do if first is larger

-> NS f xs
-> NS g xs
-> r

Compare two sums with respect to the choice they are making.

A value that chooses the first option is considered smaller than one that chooses the second option.

If the choices are different, then either the first (if the first is smaller than the second) or the third (if the first is larger than the second) argument are called. If both choices are equal, then the second argument is called, which has access to the elements contained in the sums.

Since: sop-core-0.3.2.0

ccompare_NS Source #

Arguments

:: forall k c proxy r f g (xs :: [k]). All c xs
=> proxy c
-> r

what to do if first is smaller

-> ( forall (x :: k). c x => f x -> g x -> r)

what to do if both are equal

-> r

what to do if first is larger

-> NS f xs
-> NS g xs
-> r

Constrained version of compare_NS .

Since: sop-core-0.3.2.0

compare_SOP Source #

Arguments

:: forall k r (f :: k -> Type ) (g :: k -> Type ) (xss :: [[k]]). r

what to do if first is smaller

-> ( forall (xs :: [k]). NP f xs -> NP g xs -> r)

what to do if both are equal

-> r

what to do if first is larger

-> SOP f xss
-> SOP g xss
-> r

Compare two sums of products with respect to the choice in the sum they are making.

Only the sum structure is used for comparison. This is a small wrapper around ccompare_NS for a common special case.

Since: sop-core-0.3.2.0

ccompare_SOP Source #

Arguments

:: forall k (c :: k -> Constraint ) proxy r (f :: k -> Type ) (g :: k -> Type ) (xss :: [[k]]). All2 c xss
=> proxy c
-> r

what to do if first is smaller

-> ( forall (xs :: [k]). All c xs => NP f xs -> NP g xs -> r)

what to do if both are equal

-> r

what to do if first is larger

-> SOP f xss
-> SOP g xss
-> r

Constrained version of compare_SOP .

Since: sop-core-0.3.2.0

Collapsing

type family CollapseTo (h :: (k -> Type ) -> l -> Type ) x Source #

Maps products to lists, and sums to identities.

Instances

Instances details
type CollapseTo ( NS :: (k -> Type ) -> [k] -> Type ) a
Instance details

Defined in Data.SOP.NS

type CollapseTo ( NS :: (k -> Type ) -> [k] -> Type ) a = a
type CollapseTo ( SOP :: (k -> Type ) -> [[k]] -> Type ) a
Instance details

Defined in Data.SOP.NS

type CollapseTo ( SOP :: (k -> Type ) -> [[k]] -> Type ) a = [a]
type CollapseTo ( NP :: (k -> Type ) -> [k] -> Type ) a
Instance details

Defined in Data.SOP.NP

type CollapseTo ( NP :: (k -> Type ) -> [k] -> Type ) a = [a]
type CollapseTo ( POP :: (k -> Type ) -> [[k]] -> Type ) a
Instance details

Defined in Data.SOP.NP

type CollapseTo ( POP :: (k -> Type ) -> [[k]] -> Type ) a = [[a]]

class HCollapse (h :: (k -> Type ) -> l -> Type ) where Source #

A class for collapsing a heterogeneous structure into a homogeneous one.

Methods

hcollapse :: forall (xs :: l) a. SListIN h xs => h ( K a :: k -> Type ) xs -> CollapseTo h a Source #

Collapse a heterogeneous structure with homogeneous elements into a homogeneous structure.

If a heterogeneous structure is instantiated to the constant functor K , then it is in fact homogeneous. This function maps such a value to a simpler Haskell datatype reflecting that. An NS ( K a) contains a single a , and an NP ( K a) contains a list of a s.

Instances:

hcollapse, collapse_NP  :: NP  (K a) xs  ->  [a]
hcollapse, collapse_NS  :: NS  (K a) xs  ->   a
hcollapse, collapse_POP :: POP (K a) xss -> [[a]]
hcollapse, collapse_SOP :: SOP (K a) xss ->  [a]

Instances

Instances details
HCollapse ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hcollapse :: forall (xs :: l) a. SListIN SOP xs => SOP ( K a) xs -> CollapseTo SOP a Source #

HCollapse ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hcollapse :: forall (xs :: l) a. SListIN NS xs => NS ( K a) xs -> CollapseTo NS a Source #

HCollapse ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hcollapse :: forall (xs :: l) a. SListIN POP xs => POP ( K a) xs -> CollapseTo POP a Source #

HCollapse ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hcollapse :: forall (xs :: l) a. SListIN NP xs => NP ( K a) xs -> CollapseTo NP a Source #

Folding and sequencing

class HTraverse_ (h :: (k -> Type ) -> l -> Type ) where Source #

A generalization of traverse_ or foldMap .

Since: sop-core-0.3.2.0

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN h c xs, Applicative g) => proxy c -> ( forall (a :: k). c a => f a -> g ()) -> h f xs -> g () Source #

Corresponds to traverse_ .

Instances:

hctraverse_, ctraverse__NP  :: (All  c xs , Applicative g) => proxy c -> (forall a. c a => f a -> g ()) -> NP  f xs  -> g ()
hctraverse_, ctraverse__NS  :: (All2 c xs , Applicative g) => proxy c -> (forall a. c a => f a -> g ()) -> NS  f xs  -> g ()
hctraverse_, ctraverse__POP :: (All  c xss, Applicative g) => proxy c -> (forall a. c a => f a -> g ()) -> POP f xss -> g ()
hctraverse_, ctraverse__SOP :: (All2 c xss, Applicative g) => proxy c -> (forall a. c a => f a -> g ()) -> SOP f xss -> g ()

Since: sop-core-0.3.2.0

htraverse_ :: forall (xs :: l) g f. ( SListIN h xs, Applicative g) => ( forall (a :: k). f a -> g ()) -> h f xs -> g () Source #

Unconstrained version of hctraverse_ .

Instances:

traverse_, traverse__NP  :: (SListI  xs , Applicative g) => (forall a. f a -> g ()) -> NP  f xs  -> g ()
traverse_, traverse__NS  :: (SListI  xs , Applicative g) => (forall a. f a -> g ()) -> NS  f xs  -> g ()
traverse_, traverse__POP :: (SListI2 xss, Applicative g) => (forall a. f a -> g ()) -> POP f xss -> g ()
traverse_, traverse__SOP :: (SListI2 xss, Applicative g) => (forall a. f a -> g ()) -> SOP f xss -> g ()

Since: sop-core-0.3.2.0

Instances

Instances details
HTraverse_ ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN SOP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> SOP f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN SOP xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> SOP f xs -> g () Source #

HTraverse_ ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN NS c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> NS f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN NS xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> NS f xs -> g () Source #

HTraverse_ ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN POP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> POP f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN POP xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> POP f xs -> g () Source #

HTraverse_ ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hctraverse_ :: forall c (xs :: l) g proxy f. ( AllN NP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g ()) -> NP f xs -> g () Source #

htraverse_ :: forall (xs :: l) g f. ( SListIN NP xs, Applicative g) => ( forall (a :: k0). f a -> g ()) -> NP f xs -> g () Source #

hcfoldMap :: forall k l h c (xs :: l) m proxy f. ( HTraverse_ h, AllN h c xs, Monoid m) => proxy c -> ( forall (a :: k). c a => f a -> m) -> h f xs -> m Source #

Special case of hctraverse_ .

Since: sop-core-0.3.2.0

hcfor_ :: forall k l h c (xs :: l) g proxy f. ( HTraverse_ h, AllN h c xs, Applicative g) => proxy c -> h f xs -> ( forall (a :: k). c a => f a -> g ()) -> g () Source #

Flipped version of hctraverse_ .

Since: sop-core-0.3.2.0

class HAp h => HSequence (h :: (k -> Type ) -> l -> Type ) where Source #

A generalization of sequenceA .

Methods

hsequence' :: forall (xs :: l) f (g :: k -> Type ). ( SListIN h xs, Applicative f) => h (f :.: g) xs -> f (h g xs) Source #

Corresponds to sequenceA .

Lifts an applicative functor out of a structure.

Instances:

hsequence', sequence'_NP  :: (SListI  xs , Applicative f) => NP  (f :.: g) xs  -> f (NP  g xs )
hsequence', sequence'_NS  :: (SListI  xs , Applicative f) => NS  (f :.: g) xs  -> f (NS  g xs )
hsequence', sequence'_POP :: (SListI2 xss, Applicative f) => POP (f :.: g) xss -> f (POP g xss)
hsequence', sequence'_SOP :: (SListI2 xss, Applicative f) => SOP (f :.: g) xss -> f (SOP g xss)

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN h c xs, Applicative g) => proxy c -> ( forall (a :: k). c a => f a -> g (f' a)) -> h f xs -> g (h f' xs) Source #

Corresponds to traverse .

Instances:

hctraverse', ctraverse'_NP  :: (All  c xs , Applicative g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> NP  f xs  -> g (NP  f' xs )
hctraverse', ctraverse'_NS  :: (All2 c xs , Applicative g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> NS  f xs  -> g (NS  f' xs )
hctraverse', ctraverse'_POP :: (All  c xss, Applicative g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> POP f xss -> g (POP f' xss)
hctraverse', ctraverse'_SOP :: (All2 c xss, Applicative g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> SOP f xss -> g (SOP f' xss)

Since: sop-core-0.3.2.0

htraverse' :: forall (xs :: l) g f f'. ( SListIN h xs, Applicative g) => ( forall (a :: k). f a -> g (f' a)) -> h f xs -> g (h f' xs) Source #

Unconstrained variant of hctraverse `.

Instances:

htraverse', traverse'_NP  :: (SListI  xs , Applicative g) => (forall a. c a => f a -> g (f' a)) -> NP  f xs  -> g (NP  f' xs )
htraverse', traverse'_NS  :: (SListI2 xs , Applicative g) => (forall a. c a => f a -> g (f' a)) -> NS  f xs  -> g (NS  f' xs )
htraverse', traverse'_POP :: (SListI  xss, Applicative g) => (forall a. c a => f a -> g (f' a)) -> POP f xss -> g (POP f' xss)
htraverse', traverse'_SOP :: (SListI2 xss, Applicative g) => (forall a. c a => f a -> g (f' a)) -> SOP f xss -> g (SOP f' xss)

Since: sop-core-0.3.2.0

Instances

Instances details
HSequence ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN SOP xs, Applicative f) => SOP (f :.: g) xs -> f ( SOP g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN SOP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> SOP f xs -> g ( SOP f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN SOP xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> SOP f xs -> g ( SOP f' xs) Source #

HSequence ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN NS xs, Applicative f) => NS (f :.: g) xs -> f ( NS g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN NS c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> NS f xs -> g ( NS f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN NS xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> NS f xs -> g ( NS f' xs) Source #

HSequence ( POP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN POP xs, Applicative f) => POP (f :.: g) xs -> f ( POP g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN POP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> POP f xs -> g ( POP f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN POP xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> POP f xs -> g ( POP f' xs) Source #

HSequence ( NP :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

hsequence' :: forall (xs :: l) f (g :: k0 -> Type ). ( SListIN NP xs, Applicative f) => NP (f :.: g) xs -> f ( NP g xs) Source #

hctraverse' :: forall c (xs :: l) g proxy f f'. ( AllN NP c xs, Applicative g) => proxy c -> ( forall (a :: k0). c a => f a -> g (f' a)) -> NP f xs -> g ( NP f' xs) Source #

htraverse' :: forall (xs :: l) g f f'. ( SListIN NP xs, Applicative g) => ( forall (a :: k0). f a -> g (f' a)) -> NP f xs -> g ( NP f' xs) Source #

hsequence :: forall l h (xs :: l) f. ( SListIN h xs, SListIN ( Prod h) xs, HSequence h, Applicative f) => h f xs -> f (h I xs) Source #

Special case of hsequence' where g = I .

hsequenceK :: forall k l h (xs :: l) f a. ( SListIN h xs, SListIN ( Prod h) xs, Applicative f, HSequence h) => h ( K (f a) :: k -> Type ) xs -> f (h ( K a :: k -> Type ) xs) Source #

Special case of hsequence' where g = K a .

hctraverse :: forall l h c (xs :: l) g proxy f. ( HSequence h, AllN h c xs, Applicative g) => proxy c -> ( forall a. c a => f a -> g a) -> h f xs -> g (h I xs) Source #

Special case of hctraverse' where f' = I .

Since: sop-core-0.3.2.0

hcfor :: forall l h c (xs :: l) g proxy f. ( HSequence h, AllN h c xs, Applicative g) => proxy c -> h f xs -> ( forall a. c a => f a -> g a) -> g (h I xs) Source #

Flipped version of hctraverse .

Since: sop-core-0.3.2.0

Expanding sums to products

class HExpand (h :: (k -> Type ) -> l -> Type ) where Source #

A class for expanding sum structures into corresponding product structures, filling in the slots not targeted by the sum with default values.

Since: sop-core-0.2.5.0

Methods

hexpand :: forall (xs :: l) f. SListIN ( Prod h) xs => ( forall (x :: k). f x) -> h f xs -> Prod h f xs Source #

Expand a given sum structure into a corresponding product structure by placing the value contained in the sum into the corresponding position in the product, and using the given default value for all other positions.

Instances:

hexpand, expand_NS  :: SListI xs   => (forall x . f x) -> NS  f xs  -> NP  f xs
hexpand, expand_SOP :: SListI2 xss => (forall x . f x) -> SOP f xss -> POP f xss

Examples:

>>> hexpand Nothing (S (Z (Just 3))) :: NP Maybe '[Char, Int, Bool]
Nothing :* Just 3 :* Nothing :* Nil
>>> hexpand [] (SOP (S (Z ([1,2] :* "xyz" :* Nil)))) :: POP [] '[ '[Bool], '[Int, Char] ]
POP (([] :* Nil) :* ([1,2] :* "xyz" :* Nil) :* Nil)

Since: sop-core-0.2.5.0

hcexpand :: forall c (xs :: l) proxy f. AllN ( Prod h) c xs => proxy c -> ( forall (x :: k). c x => f x) -> h f xs -> Prod h f xs Source #

Variant of hexpand that allows passing a constrained default.

Instances:

hcexpand, cexpand_NS  :: All  c xs  => proxy c -> (forall x . c x => f x) -> NS  f xs  -> NP  f xs
hcexpand, cexpand_SOP :: All2 c xss => proxy c -> (forall x . c x => f x) -> SOP f xss -> POP f xss

Examples:

>>> hcexpand (Proxy :: Proxy Bounded) (I minBound) (S (Z (I 20))) :: NP I '[Bool, Int, Ordering]
I False :* I 20 :* I LT :* Nil
>>> hcexpand (Proxy :: Proxy Num) (I 0) (SOP (S (Z (I 1 :* I 2 :* Nil)))) :: POP I '[ '[Double], '[Int, Int] ]
POP ((I 0.0 :* Nil) :* (I 1 :* I 2 :* Nil) :* Nil)

Since: sop-core-0.2.5.0

Instances

Instances details
HExpand ( SOP :: (k -> Type ) -> [[k]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hexpand :: forall (xs :: l) f. SListIN ( Prod SOP ) xs => ( forall (x :: k0). f x) -> SOP f xs -> Prod SOP f xs Source #

hcexpand :: forall c (xs :: l) proxy f. AllN ( Prod SOP ) c xs => proxy c -> ( forall (x :: k0). c x => f x) -> SOP f xs -> Prod SOP f xs Source #

HExpand ( NS :: (k -> Type ) -> [k] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

hexpand :: forall (xs :: l) f. SListIN ( Prod NS ) xs => ( forall (x :: k0). f x) -> NS f xs -> Prod NS f xs Source #

hcexpand :: forall c (xs :: l) proxy f. AllN ( Prod NS ) c xs => proxy c -> ( forall (x :: k0). c x => f x) -> NS f xs -> Prod NS f xs Source #

Transformation of index lists and coercions

class (( Same h1 :: (k2 -> Type ) -> l2 -> Type ) ~ h2, ( Same h2 :: (k1 -> Type ) -> l1 -> Type ) ~ h1) => HTrans (h1 :: (k1 -> Type ) -> l1 -> Type ) (h2 :: (k2 -> Type ) -> l2 -> Type ) where Source #

A class for transforming structures into related structures with a different index list, as long as the index lists have the same shape and the elements and interpretation functions are suitably related.

Since: sop-core-0.3.1.0

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod h1) c xs ys => proxy c -> ( forall (x :: k1) (y :: k2). c x y => f x -> g y) -> h1 f xs -> h2 g ys Source #

Transform a structure into a related structure given a conversion function for the elements.

Since: sop-core-0.3.1.0

hcoerce :: forall (f :: k1 -> Type ) (g :: k2 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod h1) ( LiftedCoercible f g) xs ys => h1 f xs -> h2 g ys Source #

Safely coerce a structure into a representationally equal structure.

This is a special case of htrans , but can be implemented more efficiently; for example in terms of unsafeCoerce .

Examples:

>>> hcoerce (I (Just LT) :* I (Just 'x') :* I (Just True) :* Nil) :: NP Maybe '[Ordering, Char, Bool]
Just LT :* Just 'x' :* Just True :* Nil
>>> hcoerce (SOP (Z (K True :* K False :* Nil))) :: SOP I '[ '[Bool, Bool], '[Bool] ]
SOP (Z (I True :* I False :* Nil))

Since: sop-core-0.3.1.0

Instances

Instances details
HTrans ( SOP :: (k1 -> Type ) -> [[k1]] -> Type ) ( SOP :: (k2 -> Type ) -> [[k2]] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod SOP ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> SOP f xs -> SOP g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod SOP ) ( LiftedCoercible f g) xs ys => SOP f xs -> SOP g ys Source #

HTrans ( NS :: (k1 -> Type ) -> [k1] -> Type ) ( NS :: (k2 -> Type ) -> [k2] -> Type )
Instance details

Defined in Data.SOP.NS

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod NS ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> NS f xs -> NS g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod NS ) ( LiftedCoercible f g) xs ys => NS f xs -> NS g ys Source #

HTrans ( POP :: (k1 -> Type ) -> [[k1]] -> Type ) ( POP :: (k2 -> Type ) -> [[k2]] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod POP ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> POP f xs -> POP g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod POP ) ( LiftedCoercible f g) xs ys => POP f xs -> POP g ys Source #

HTrans ( NP :: (k1 -> Type ) -> [k1] -> Type ) ( NP :: (k2 -> Type ) -> [k2] -> Type )
Instance details

Defined in Data.SOP.NP

Methods

htrans :: forall c (xs :: l1) (ys :: l2) proxy f g. AllZipN ( Prod NP ) c xs ys => proxy c -> ( forall (x :: k10) (y :: k20). c x y => f x -> g y) -> NP f xs -> NP g ys Source #

hcoerce :: forall (f :: k10 -> Type ) (g :: k20 -> Type ) (xs :: l1) (ys :: l2). AllZipN ( Prod NP ) ( LiftedCoercible f g) xs ys => NP f xs -> NP g ys Source #

hfromI :: forall l1 k2 l2 h1 (f :: k2 -> Type ) (xs :: l1) (ys :: l2) h2. ( AllZipN ( Prod h1) ( LiftedCoercible I f) xs ys, HTrans h1 h2) => h1 I xs -> h2 f ys Source #

Specialization of hcoerce .

Since: sop-core-0.3.1.0

htoI :: forall k1 l1 l2 h1 (f :: k1 -> Type ) (xs :: l1) (ys :: l2) h2. ( AllZipN ( Prod h1) ( LiftedCoercible f I ) xs ys, HTrans h1 h2) => h1 f xs -> h2 I ys Source #

Specialization of hcoerce .

Since: sop-core-0.3.1.0

Partial operations

fromList :: forall k (xs :: [k]) a. SListI xs => [a] -> Maybe ( NP ( K a :: k -> Type ) xs) Source #

Construct a homogeneous n-ary product from a normal Haskell list.

Returns Nothing if the length of the list does not exactly match the expected size of the product.

Utilities

Basic functors

newtype K a (b :: k) Source #

The constant type functor.

Like Constant , but kind-polymorphic in its second argument and with a shorter name.

Constructors

K a

Instances

Instances details
Eq2 ( K :: Type -> Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftEq2 :: (a -> b -> Bool ) -> (c -> d -> Bool ) -> K a c -> K b d -> Bool Source #

Ord2 ( K :: Type -> Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftCompare2 :: (a -> b -> Ordering ) -> (c -> d -> Ordering ) -> K a c -> K b d -> Ordering Source #

Read2 ( K :: Type -> Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Show2 ( K :: Type -> Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftShowsPrec2 :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> ( Int -> b -> ShowS ) -> ([b] -> ShowS ) -> Int -> K a b -> ShowS Source #

liftShowList2 :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> ( Int -> b -> ShowS ) -> ([b] -> ShowS ) -> [ K a b] -> ShowS Source #

NFData2 ( K :: Type -> Type -> Type )

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> K a b -> () Source #

Functor ( K a :: Type -> Type )
Instance details

Defined in Data.SOP.BasicFunctors

Methods

fmap :: (a0 -> b) -> K a a0 -> K a b Source #

(<$) :: a0 -> K a b -> K a a0 Source #

Monoid a => Applicative ( K a :: Type -> Type )
Instance details

Defined in Data.SOP.BasicFunctors

Methods

pure :: a0 -> K a a0 Source #

(<*>) :: K a (a0 -> b) -> K a a0 -> K a b Source #

liftA2 :: (a0 -> b -> c) -> K a a0 -> K a b -> K a c Source #

(*>) :: K a a0 -> K a b -> K a b Source #

(<*) :: K a a0 -> K a b -> K a a0 Source #

Foldable ( K a :: Type -> Type )
Instance details

Defined in Data.SOP.BasicFunctors

Methods

fold :: Monoid m => K a m -> m Source #

foldMap :: Monoid m => (a0 -> m) -> K a a0 -> m Source #

foldMap' :: Monoid m => (a0 -> m) -> K a a0 -> m Source #

foldr :: (a0 -> b -> b) -> b -> K a a0 -> b Source #

foldr' :: (a0 -> b -> b) -> b -> K a a0 -> b Source #

foldl :: (b -> a0 -> b) -> b -> K a a0 -> b Source #

foldl' :: (b -> a0 -> b) -> b -> K a a0 -> b Source #

foldr1 :: (a0 -> a0 -> a0) -> K a a0 -> a0 Source #

foldl1 :: (a0 -> a0 -> a0) -> K a a0 -> a0 Source #

toList :: K a a0 -> [a0] Source #

null :: K a a0 -> Bool Source #

length :: K a a0 -> Int Source #

elem :: Eq a0 => a0 -> K a a0 -> Bool Source #

maximum :: Ord a0 => K a a0 -> a0 Source #

minimum :: Ord a0 => K a a0 -> a0 Source #

sum :: Num a0 => K a a0 -> a0 Source #

product :: Num a0 => K a a0 -> a0 Source #

Traversable ( K a :: Type -> Type )
Instance details

Defined in Data.SOP.BasicFunctors

Methods

traverse :: Applicative f => (a0 -> f b) -> K a a0 -> f ( K a b) Source #

sequenceA :: Applicative f => K a (f a0) -> f ( K a a0) Source #

mapM :: Monad m => (a0 -> m b) -> K a a0 -> m ( K a b) Source #

sequence :: Monad m => K a (m a0) -> m ( K a a0) Source #

Eq a => Eq1 ( K a :: Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftEq :: (a0 -> b -> Bool ) -> K a a0 -> K a b -> Bool Source #

Ord a => Ord1 ( K a :: Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftCompare :: (a0 -> b -> Ordering ) -> K a a0 -> K a b -> Ordering Source #

Read a => Read1 ( K a :: Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Show a => Show1 ( K a :: Type -> Type )

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftShowsPrec :: ( Int -> a0 -> ShowS ) -> ([a0] -> ShowS ) -> Int -> K a a0 -> ShowS Source #

liftShowList :: ( Int -> a0 -> ShowS ) -> ([a0] -> ShowS ) -> [ K a a0] -> ShowS Source #

NFData a => NFData1 ( K a :: Type -> Type )

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftRnf :: (a0 -> ()) -> K a a0 -> () Source #

Eq a => Eq ( K a b)
Instance details

Defined in Data.SOP.BasicFunctors

Ord a => Ord ( K a b)
Instance details

Defined in Data.SOP.BasicFunctors

Read a => Read ( K a b)
Instance details

Defined in Data.SOP.BasicFunctors

Show a => Show ( K a b)
Instance details

Defined in Data.SOP.BasicFunctors

Generic ( K a b)
Instance details

Defined in Data.SOP.BasicFunctors

Associated Types

type Rep ( K a b) :: Type -> Type Source #

Semigroup a => Semigroup ( K a b)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.BasicFunctors

Monoid a => Monoid ( K a b)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.BasicFunctors

NFData a => NFData ( K a b)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

rnf :: K a b -> () Source #

HasDatatypeInfo ( K a b) Source #
Instance details

Defined in Generics.SOP.Instances

Generic ( K a b) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( K a b) :: [[ Type ]] Source #

type Rep ( K a b)
Instance details

Defined in Data.SOP.BasicFunctors

type Rep ( K a b) = D1 (' MetaData "K" "Data.SOP.BasicFunctors" "sop-core-0.5.0.2-AIuTztJH91BC7RnRhk6DyL" ' True ) ( C1 (' MetaCons "K" ' PrefixI ' False ) ( S1 (' MetaSel (' Nothing :: Maybe Symbol ) ' NoSourceUnpackedness ' NoSourceStrictness ' DecidedLazy ) ( Rec0 a)))
type DatatypeInfoOf ( K a b) Source #
Instance details

Defined in Generics.SOP.Instances

type DatatypeInfoOf ( K a b) = ' Newtype "Data.SOP.BasicFunctors" "K" (' Constructor "K")
type Code ( K a b) Source #
Instance details

Defined in Generics.SOP.Instances

type Code ( K a b) = '['[a]]

unK :: forall k a (b :: k). K a b -> a Source #

Extract the contents of a K value.

newtype I a Source #

The identity type functor.

Like Identity , but with a shorter name.

Constructors

I a

Instances

Instances details
Monad I
Instance details

Defined in Data.SOP.BasicFunctors

Functor I
Instance details

Defined in Data.SOP.BasicFunctors

Methods

fmap :: (a -> b) -> I a -> I b Source #

(<$) :: a -> I b -> I a Source #

Applicative I
Instance details

Defined in Data.SOP.BasicFunctors

Foldable I
Instance details

Defined in Data.SOP.BasicFunctors

Traversable I
Instance details

Defined in Data.SOP.BasicFunctors

Methods

traverse :: Applicative f => (a -> f b) -> I a -> f ( I b) Source #

sequenceA :: Applicative f => I (f a) -> f ( I a) Source #

mapM :: Monad m => (a -> m b) -> I a -> m ( I b) Source #

sequence :: Monad m => I (m a) -> m ( I a) Source #

Eq1 I

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftEq :: (a -> b -> Bool ) -> I a -> I b -> Bool Source #

Ord1 I

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Read1 I

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Show1 I

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

NFData1 I

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftRnf :: (a -> ()) -> I a -> () Source #

Eq a => Eq ( I a)
Instance details

Defined in Data.SOP.BasicFunctors

Ord a => Ord ( I a)
Instance details

Defined in Data.SOP.BasicFunctors

Read a => Read ( I a)
Instance details

Defined in Data.SOP.BasicFunctors

Show a => Show ( I a)
Instance details

Defined in Data.SOP.BasicFunctors

Generic ( I a)
Instance details

Defined in Data.SOP.BasicFunctors

Associated Types

type Rep ( I a) :: Type -> Type Source #

Semigroup a => Semigroup ( I a)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.BasicFunctors

Monoid a => Monoid ( I a)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.BasicFunctors

NFData a => NFData ( I a)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

rnf :: I a -> () Source #

HasDatatypeInfo ( I a) Source #
Instance details

Defined in Generics.SOP.Instances

Generic ( I a) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( I a) :: [[ Type ]] Source #

type Rep ( I a)
Instance details

Defined in Data.SOP.BasicFunctors

type Rep ( I a) = D1 (' MetaData "I" "Data.SOP.BasicFunctors" "sop-core-0.5.0.2-AIuTztJH91BC7RnRhk6DyL" ' True ) ( C1 (' MetaCons "I" ' PrefixI ' False ) ( S1 (' MetaSel (' Nothing :: Maybe Symbol ) ' NoSourceUnpackedness ' NoSourceStrictness ' DecidedLazy ) ( Rec0 a)))
type DatatypeInfoOf ( I a) Source #
Instance details

Defined in Generics.SOP.Instances

type DatatypeInfoOf ( I a) = ' Newtype "Data.SOP.BasicFunctors" "I" (' Constructor "I")
type Code ( I a) Source #
Instance details

Defined in Generics.SOP.Instances

type Code ( I a) = '['[a]]

unI :: I a -> a Source #

Extract the contents of an I value.

newtype ((f :: l -> Type ) :.: (g :: k -> l)) (p :: k) infixr 7 Source #

Composition of functors.

Like Compose , but kind-polymorphic and with a shorter name.

Constructors

Comp (f (g p))

Instances

Instances details
( Functor f, Functor g) => Functor (f :.: g)
Instance details

Defined in Data.SOP.BasicFunctors

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(<$) :: a -> (f :.: g) b -> (f :.: g) a Source #

( Applicative f, Applicative g) => Applicative (f :.: g)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

pure :: a -> (f :.: g) a Source #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

liftA2 :: (a -> b -> c) -> (f :.: g) a -> (f :.: g) b -> (f :.: g) c Source #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b Source #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a Source #

( Foldable f, Foldable g) => Foldable (f :.: g)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

fold :: Monoid m => (f :.: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

toList :: (f :.: g) a -> [a] Source #

null :: (f :.: g) a -> Bool Source #

length :: (f :.: g) a -> Int Source #

elem :: Eq a => a -> (f :.: g) a -> Bool Source #

maximum :: Ord a => (f :.: g) a -> a Source #

minimum :: Ord a => (f :.: g) a -> a Source #

sum :: Num a => (f :.: g) a -> a Source #

product :: Num a => (f :.: g) a -> a Source #

( Traversable f, Traversable g) => Traversable (f :.: g)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) Source #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) Source #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) Source #

( Eq1 f, Eq1 g) => Eq1 (f :.: g)

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftEq :: (a -> b -> Bool ) -> (f :.: g) a -> (f :.: g) b -> Bool Source #

( Ord1 f, Ord1 g) => Ord1 (f :.: g)

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftCompare :: (a -> b -> Ordering ) -> (f :.: g) a -> (f :.: g) b -> Ordering Source #

( Read1 f, Read1 g) => Read1 (f :.: g)

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

( Show1 f, Show1 g) => Show1 (f :.: g)

Since: sop-core-0.2.4.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftShowsPrec :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> Int -> (f :.: g) a -> ShowS Source #

liftShowList :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> [(f :.: g) a] -> ShowS Source #

( NFData1 f, NFData1 g) => NFData1 (f :.: g)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

liftRnf :: (a -> ()) -> (f :.: g) a -> () Source #

( Eq1 f, Eq1 g, Eq a) => Eq ((f :.: g) a)
Instance details

Defined in Data.SOP.BasicFunctors

Methods

(==) :: (f :.: g) a -> (f :.: g) a -> Bool Source #

(/=) :: (f :.: g) a -> (f :.: g) a -> Bool Source #

( Ord1 f, Ord1 g, Ord a) => Ord ((f :.: g) a)
Instance details

Defined in Data.SOP.BasicFunctors

Methods

compare :: (f :.: g) a -> (f :.: g) a -> Ordering Source #

(<) :: (f :.: g) a -> (f :.: g) a -> Bool Source #

(<=) :: (f :.: g) a -> (f :.: g) a -> Bool Source #

(>) :: (f :.: g) a -> (f :.: g) a -> Bool Source #

(>=) :: (f :.: g) a -> (f :.: g) a -> Bool Source #

max :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a Source #

min :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a Source #

( Read1 f, Read1 g, Read a) => Read ((f :.: g) a)
Instance details

Defined in Data.SOP.BasicFunctors

( Show1 f, Show1 g, Show a) => Show ((f :.: g) a)
Instance details

Defined in Data.SOP.BasicFunctors

Generic ((f :.: g) p)
Instance details

Defined in Data.SOP.BasicFunctors

Associated Types

type Rep ((f :.: g) p) :: Type -> Type Source #

Methods

from :: (f :.: g) p -> Rep ((f :.: g) p) x Source #

to :: Rep ((f :.: g) p) x -> (f :.: g) p Source #

Semigroup (f (g x)) => Semigroup ((f :.: g) x)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

(<>) :: (f :.: g) x -> (f :.: g) x -> (f :.: g) x Source #

sconcat :: NonEmpty ((f :.: g) x) -> (f :.: g) x Source #

stimes :: Integral b => b -> (f :.: g) x -> (f :.: g) x Source #

Monoid (f (g x)) => Monoid ((f :.: g) x)

Since: sop-core-0.4.0.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

mempty :: (f :.: g) x Source #

mappend :: (f :.: g) x -> (f :.: g) x -> (f :.: g) x Source #

mconcat :: [(f :.: g) x] -> (f :.: g) x Source #

NFData (f (g a)) => NFData ((f :.: g) a)

Since: sop-core-0.2.5.0

Instance details

Defined in Data.SOP.BasicFunctors

Methods

rnf :: (f :.: g) a -> () Source #

HasDatatypeInfo ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type DatatypeInfoOf ((f :.: g) p) :: DatatypeInfo Source #

Methods

datatypeInfo :: proxy ((f :.: g) p) -> DatatypeInfo ( Code ((f :.: g) p)) Source #

Generic ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ((f :.: g) p) :: [[ Type ]] Source #

Methods

from :: (f :.: g) p -> Rep ((f :.: g) p) Source #

to :: Rep ((f :.: g) p) -> (f :.: g) p Source #

type Rep ((f :.: g) p)
Instance details

Defined in Data.SOP.BasicFunctors

type Rep ((f :.: g) p) = D1 (' MetaData ":.:" "Data.SOP.BasicFunctors" "sop-core-0.5.0.2-AIuTztJH91BC7RnRhk6DyL" ' True ) ( C1 (' MetaCons "Comp" ' PrefixI ' False ) ( S1 (' MetaSel (' Nothing :: Maybe Symbol ) ' NoSourceUnpackedness ' NoSourceStrictness ' DecidedLazy ) ( Rec0 (f (g p)))))
type DatatypeInfoOf ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

type DatatypeInfoOf ((f :.: g) p) = ' Newtype "Data.SOP.BasicFunctors" ":.:" (' Constructor "Comp")
type Code ((f :.: g) p) Source #
Instance details

Defined in Generics.SOP.Instances

type Code ((f :.: g) p) = '['[f (g p)]]

unComp :: forall l k f (g :: k -> l) (p :: k). (f :.: g) p -> f (g p) Source #

Extract the contents of a Comp value.

Mapping functions

mapII :: (a -> b) -> I a -> I b Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapIK :: forall k a b (c :: k). (a -> b) -> I a -> K b c Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapKI :: forall k a b (c :: k). (a -> b) -> K a c -> I b Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapKK :: forall k1 k2 a b (c :: k1) (d :: k2). (a -> b) -> K a c -> K b d Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapIII :: (a -> b -> c) -> I a -> I b -> I c Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapIIK :: forall k a b c (d :: k). (a -> b -> c) -> I a -> I b -> K c d Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapIKI :: forall k a b c (d :: k). (a -> b -> c) -> I a -> K b d -> I c Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapIKK :: forall k1 k2 a b c (d :: k1) (e :: k2). (a -> b -> c) -> I a -> K b d -> K c e Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapKII :: forall k a b c (d :: k). (a -> b -> c) -> K a d -> I b -> I c Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapKIK :: forall k1 k2 a b c (d :: k1) (e :: k2). (a -> b -> c) -> K a d -> I b -> K c e Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapKKI :: forall k1 k2 a b c (d :: k1) (e :: k2). (a -> b -> c) -> K a d -> K b e -> I c Source #

Lift the given function.

Since: sop-core-0.2.5.0

mapKKK :: forall k1 k2 k3 a b c (d :: k1) (e :: k2) (f :: k3). (a -> b -> c) -> K a d -> K b e -> K c f Source #

Lift the given function.

Since: sop-core-0.2.5.0

Mapping constraints

class ( AllF c xs, SListI xs) => All (c :: k -> Constraint ) (xs :: [k]) Source #

Require a constraint for every element of a list.

If you have a datatype that is indexed over a type-level list, then you can use All to indicate that all elements of that type-level list must satisfy a given constraint.

Example: The constraint

All Eq '[ Int, Bool, Char ]

is equivalent to the constraint

(Eq Int, Eq Bool, Eq Char)

Example: A type signature such as

f :: All Eq xs => NP I xs -> ...

means that f can assume that all elements of the n-ary product satisfy Eq .

Note on superclasses: ghc cannot deduce superclasses from All constraints. You might expect the following to compile

class (Eq a) => MyClass a

foo :: (All Eq xs) => NP f xs -> z
foo = [..]

bar :: (All MyClass xs) => NP f xs -> x
bar = foo

but it will fail with an error saying that it was unable to deduce the class constraint AllF Eq xs (or similar) in the definition of bar . In cases like this you can use Dict from Data.SOP.Dict to prove conversions between constraints. See this answer on SO for more details .

Minimal complete definition

cpara_SList

Instances

Instances details
All (c :: k -> Constraint ) ('[] :: [k])
Instance details

Defined in Data.SOP.Constraint

Methods

cpara_SList :: proxy c -> r '[] -> ( forall (y :: k0) (ys :: [k0]). (c y, All c ys) => r ys -> r (y ': ys)) -> r '[] Source #

(c x, All c xs) => All (c :: a -> Constraint ) (x ': xs :: [a])
Instance details

Defined in Data.SOP.Constraint

Methods

cpara_SList :: proxy c -> r '[] -> ( forall (y :: k) (ys :: [k]). (c y, All c ys) => r ys -> r (y ': ys)) -> r (x ': xs) Source #

type All2 (c :: k -> Constraint ) = All ( All c) Source #

Require a constraint for every element of a list of lists.

If you have a datatype that is indexed over a type-level list of lists, then you can use All2 to indicate that all elements of the inner lists must satisfy a given constraint.

Example: The constraint

All2 Eq '[ '[ Int ], '[ Bool, Char ] ]

is equivalent to the constraint

(Eq Int, Eq Bool, Eq Char)

Example: A type signature such as

f :: All2 Eq xss => SOP I xs -> ...

means that f can assume that all elements of the sum of product satisfy Eq .

Since 0.4.0.0, this is merely a synonym for 'All (All c)'.

Since: sop-core-0.4.0.0

cpara_SList :: All c xs => proxy c -> r ('[] :: [k]) -> ( forall (y :: k) (ys :: [k]). (c y, All c ys) => r ys -> r (y ': ys)) -> r xs Source #

Constrained paramorphism for a type-level list.

The advantage of writing functions in terms of cpara_SList is that they are then typically not recursive, and can be unfolded statically if the type-level list is statically known.

Since: sop-core-0.4.0.0

ccase_SList :: forall k c (xs :: [k]) proxy r. All c xs => proxy c -> r ('[] :: [k]) -> ( forall (y :: k) (ys :: [k]). (c y, All c ys) => r (y ': ys)) -> r xs Source #

Constrained case distinction on a type-level list.

Since: sop-core-0.4.0.0

class ( SListI xs, SListI ys, SameShapeAs xs ys, SameShapeAs ys xs, AllZipF c xs ys) => AllZip (c :: a -> b -> Constraint ) (xs :: [a]) (ys :: [b]) Source #

Require a constraint pointwise for every pair of elements from two lists.

Example: The constraint

AllZip (~) '[ Int, Bool, Char ] '[ a, b, c ]

is equivalent to the constraint

(Int ~ a, Bool ~ b, Char ~ c)

Since: sop-core-0.3.1.0

Instances

Instances details
( SListI xs, SListI ys, SameShapeAs xs ys, SameShapeAs ys xs, AllZipF c xs ys) => AllZip (c :: a -> b -> Constraint ) (xs :: [a]) (ys :: [b])
Instance details

Defined in Data.SOP.Constraint

class ( AllZipF ( AllZip f) xss yss, SListI xss, SListI yss, SameShapeAs xss yss, SameShapeAs yss xss) => AllZip2 (f :: a -> b -> Constraint ) (xss :: [[a]]) (yss :: [[b]]) Source #

Require a constraint pointwise for every pair of elements from two lists of lists.

Instances

Instances details
( AllZipF ( AllZip f) xss yss, SListI xss, SListI yss, SameShapeAs xss yss, SameShapeAs yss xss) => AllZip2 (f :: a -> b -> Constraint ) (xss :: [[a]]) (yss :: [[b]])
Instance details

Defined in Data.SOP.Constraint

type family AllN (h :: (k -> Type ) -> l -> Type ) (c :: k -> Constraint ) :: l -> Constraint Source #

A generalization of All and All2 .

The family AllN expands to All or All2 depending on whether the argument is indexed by a list or a list of lists.

Instances

Instances details
type AllN ( NS :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NS

type AllN ( NS :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint ) = All c
type AllN ( SOP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NS

type AllN ( SOP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint ) = All2 c
type AllN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: k -> Constraint ) = All c
type AllN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: k -> Constraint ) = All2 c

type family AllZipN (h :: (k -> Type ) -> l -> Type ) (c :: k1 -> k2 -> Constraint ) :: l1 -> l2 -> Constraint Source #

A generalization of AllZip and AllZip2 .

The family AllZipN expands to AllZip or AllZip2 depending on whther the argument is indexed by a list or a list of lists.

Instances

Instances details
type AllZipN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: a -> b -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllZipN ( NP :: (k -> Type ) -> [k] -> Type ) (c :: a -> b -> Constraint ) = AllZip c
type AllZipN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: a -> b -> Constraint )
Instance details

Defined in Data.SOP.NP

type AllZipN ( POP :: (k -> Type ) -> [[k]] -> Type ) (c :: a -> b -> Constraint ) = AllZip2 c

Other constraints

class f (g x) => Compose (f :: k -> Constraint ) (g :: k1 -> k) (x :: k1) infixr 9 Source #

Composition of constraints.

Note that the result of the composition must be a constraint, and therefore, in Compose f g , the kind of f is k -> Constraint . The kind of g , however, is l -> k and can thus be a normal type constructor.

A typical use case is in connection with All on an NP or an NS . For example, in order to denote that all elements on an NP f xs satisfy Show , we can say All ( Compose Show f) xs .

Since: sop-core-0.2

Instances

Instances details
f (g x) => Compose (f :: k1 -> Constraint ) (g :: k2 -> k1) (x :: k2)
Instance details

Defined in Data.SOP.Constraint

class (f x, g x) => And (f :: k -> Constraint ) (g :: k -> Constraint ) (x :: k) infixl 7 Source #

Pairing of constraints.

Since: sop-core-0.2

Instances

Instances details
(f x, g x) => And (f :: k -> Constraint ) (g :: k -> Constraint ) (x :: k)
Instance details

Defined in Data.SOP.Constraint

class Top (x :: k) Source #

A constraint that can always be satisfied.

Since: sop-core-0.2

Instances

Instances details
Top (x :: k)
Instance details

Defined in Data.SOP.Constraint

class Coercible (f x) (g y) => LiftedCoercible (f :: k -> k1) (g :: k2 -> k1) (x :: k) (y :: k2) Source #

The constraint LiftedCoercible f g x y is equivalent to Coercible (f x) (g y) .

Since: sop-core-0.3.1.0

Instances

Instances details
Coercible (f x) (g y) => LiftedCoercible (f :: k1 -> k2) (g :: k3 -> k2) (x :: k1) (y :: k3)
Instance details

Defined in Data.SOP.Constraint

type family SameShapeAs (xs :: [a]) (ys :: [b]) where ... Source #

Type family that forces a type-level list to be of the same shape as the given type-level list.

Since 0.5.0.0, this only tests the top-level structure of the list, and is intended to be used in conjunction with a separate construct (such as the AllZip , AllZipF combination to tie the recursive knot). The reason is that making SameShapeAs directly recursive leads to quadratic compile times.

The main use of this constraint is to help type inference to learn something about otherwise unknown type-level lists.

Since: sop-core-0.5.0.0

Equations

SameShapeAs ('[] :: [a]) (ys :: [b]) = ys ~ ('[] :: [b])
SameShapeAs (x ': xs :: [a1]) (ys :: [a2]) = ys ~ ( Head ys ': Tail ys)

Singletons

data SList (a :: [k]) where Source #

Explicit singleton list.

A singleton list can be used to reveal the structure of a type-level list argument that the function is quantified over. For every type-level list xs , there is one non-bottom value of type SList xs .

Note that these singleton lists are polymorphic in the list elements; we do not require a singleton representation for them.

Since: sop-core-0.2

Constructors

SNil :: forall k. SList ('[] :: [k])
SCons :: forall k (xs :: [k]) (x :: k). SListI xs => SList (x ': xs)

type SListI = All ( Top :: k -> Constraint ) Source #

Implicit singleton list.

A singleton list can be used to reveal the structure of a type-level list argument that the function is quantified over.

Since 0.4.0.0, this is now defined in terms of All . A singleton list provides a witness for a type-level list where the elements need not satisfy any additional constraints.

Since: sop-core-0.4.0.0

type SListI2 = All ( SListI :: [k] -> Constraint ) Source #

Require a singleton for every inner list in a list of lists.

sList :: forall k (xs :: [k]). SListI xs => SList xs Source #

Get hold of an explicit singleton (that one can then pattern match on) for a type-level list

para_SList :: forall k (xs :: [k]) r. SListI xs => r ('[] :: [k]) -> ( forall (y :: k) (ys :: [k]). SListI ys => r ys -> r (y ': ys)) -> r xs Source #

Paramorphism for a type-level list.

Since: sop-core-0.4.0.0

case_SList :: forall k (xs :: [k]) r. SListI xs => r ('[] :: [k]) -> ( forall (y :: k) (ys :: [k]). SListI ys => r (y ': ys)) -> r xs Source #

Case distinction on a type-level list.

Since: sop-core-0.4.0.0

Shape of type-level lists

data Shape (a :: [k]) where Source #

Occasionally it is useful to have an explicit, term-level, representation of type-level lists (esp because of https://ghc.haskell.org/trac/ghc/ticket/9108 )

Constructors

ShapeNil :: forall k. Shape ('[] :: [k])
ShapeCons :: forall k (xs :: [k]) (x :: k). SListI xs => Shape xs -> Shape (x ': xs)

shape :: forall k (xs :: [k]). SListI xs => Shape xs Source #

The shape of a type-level list.

lengthSList :: forall k (xs :: [k]) proxy. SListI xs => proxy xs -> Int Source #

The length of a type-level list.

Since: sop-core-0.2

Re-exports

data Proxy (t :: k) Source #

Proxy is a type that holds no data, but has a phantom parameter of arbitrary type (or even kind). Its use is to provide type information, even though there is no value available of that type (or it may be too costly to create one).

Historically, Proxy :: Proxy a is a safer alternative to the undefined :: a idiom.

>>> Proxy :: Proxy (Void, Int -> Int)
Proxy

Proxy can even hold types of higher kinds,

>>> Proxy :: Proxy Either
Proxy
>>> Proxy :: Proxy Functor
Proxy
>>> Proxy :: Proxy complicatedStructure
Proxy

Constructors

Proxy

Instances

Instances details
Generic1 ( Proxy :: k -> Type )

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Proxy :: k -> Type Source #

Methods

from1 :: forall (a :: k0). Proxy a -> Rep1 Proxy a Source #

to1 :: forall (a :: k0). Rep1 Proxy a -> Proxy a Source #

Monad ( Proxy :: Type -> Type )

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Functor ( Proxy :: Type -> Type )

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Applicative ( Proxy :: Type -> Type )

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Foldable ( Proxy :: Type -> Type )

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Traversable ( Proxy :: Type -> Type )

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Alternative ( Proxy :: Type -> Type )

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

MonadPlus ( Proxy :: Type -> Type )

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Bounded ( Proxy t)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Enum ( Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Eq ( Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Data t => Data ( Proxy t)

Since: base-4.7.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g. g -> c g) -> Proxy t -> c ( Proxy t) Source #

gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c ( Proxy t) Source #

toConstr :: Proxy t -> Constr Source #

dataTypeOf :: Proxy t -> DataType Source #

dataCast1 :: Typeable t0 => ( forall d. Data d => c (t0 d)) -> Maybe (c ( Proxy t)) Source #

dataCast2 :: Typeable t0 => ( forall d e. ( Data d, Data e) => c (t0 d e)) -> Maybe (c ( Proxy t)) Source #

gmapT :: ( forall b. Data b => b -> b) -> Proxy t -> Proxy t Source #

gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQ :: ( forall d. Data d => d -> u) -> Proxy t -> [u] Source #

gmapQi :: Int -> ( forall d. Data d => d -> u) -> Proxy t -> u Source #

gmapM :: Monad m => ( forall d. Data d => d -> m d) -> Proxy t -> m ( Proxy t) Source #

gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> Proxy t -> m ( Proxy t) Source #

gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> Proxy t -> m ( Proxy t) Source #

Ord ( Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Read ( Proxy t)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Show ( Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Ix ( Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Generic ( Proxy t)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep ( Proxy t) :: Type -> Type Source #

Semigroup ( Proxy s)

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Monoid ( Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

HasDatatypeInfo ( Proxy t) Source #
Instance details

Defined in Generics.SOP.Instances

Generic ( Proxy t) Source #
Instance details

Defined in Generics.SOP.Instances

Associated Types

type Code ( Proxy t) :: [[ Type ]] Source #

type Rep1 ( Proxy :: k -> Type )
Instance details

Defined in GHC.Generics

type Rep1 ( Proxy :: k -> Type ) = D1 (' MetaData "Proxy" "Data.Proxy" "base" ' False ) ( C1 (' MetaCons "Proxy" ' PrefixI ' False ) ( U1 :: k -> Type ))
type Rep ( Proxy t)
Instance details

Defined in GHC.Generics

type Rep ( Proxy t) = D1 (' MetaData "Proxy" "Data.Proxy" "base" ' False ) ( C1 (' MetaCons "Proxy" ' PrefixI ' False ) ( U1 :: Type -> Type ))
type DatatypeInfoOf ( Proxy t) Source #
Instance details

Defined in Generics.SOP.Instances

type DatatypeInfoOf ( Proxy t) = ' ADT "Data.Proxy" "Proxy" '[' Constructor "Proxy"] '['[] :: [ StrictnessInfo ]]
type Code ( Proxy t) Source #
Instance details

Defined in Generics.SOP.Instances

type Code ( Proxy t) = '['[] :: [ Type ]]