hedgehog-1.2: Release with confidence.
Safe Haskell None
Language Haskell2010

Hedgehog.Internal.Barbie

Description

For compatibility across different versions of the barbie package.

Synopsis

Documentation

class FunctorB (b :: (k -> Type ) -> Type ) where Source #

Barbie-types that can be mapped over. Instances of FunctorB should satisfy the following laws:

bmap id = id
bmap f . bmap g = bmap (f . g)

There is a default bmap implementation for Generic types, so instances can derived automatically.

Minimal complete definition

Nothing

Methods

bmap :: ( forall (a :: k). f a -> g a) -> b f -> b g Source #

Instances

Instances details
FunctorB ( Proxy :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.FunctorB

Methods

bmap :: ( forall (a :: k0). f a -> g a) -> Proxy f -> Proxy g Source #

FunctorB ( Constant x :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.FunctorB

Methods

bmap :: ( forall (a :: k0). f a -> g a) -> Constant x f -> Constant x g Source #

FunctorB ( Const x :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.FunctorB

Methods

bmap :: ( forall (a :: k0). f a -> g a) -> Const x f -> Const x g Source #

( FunctorB a, FunctorB b) => FunctorB ( Sum a b :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.FunctorB

Methods

bmap :: ( forall (a0 :: k0). f a0 -> g a0) -> Sum a b f -> Sum a b g Source #

( FunctorB a, FunctorB b) => FunctorB ( Product a b :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.FunctorB

Methods

bmap :: ( forall (a0 :: k0). f a0 -> g a0) -> Product a b f -> Product a b g Source #

( Functor f, FunctorB b) => FunctorB ( Compose f b :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.FunctorB

Methods

bmap :: ( forall (a :: k0). f0 a -> g a) -> Compose f b f0 -> Compose f b g Source #

FunctorB ( Var a :: ( Type -> Type ) -> Type ) Source #
Instance details

Defined in Hedgehog.Internal.State

Methods

bmap :: ( forall (a0 :: k). f a0 -> g a0) -> Var a f -> Var a g Source #

class FunctorB b => TraversableB (b :: (k -> Type ) -> Type ) where Source #

Barbie-types that can be traversed from left to right. Instances should satisfy the following laws:

 t . btraverse f   = btraverse (t . f)  -- naturality
btraverse Identity = Identity           -- identity
btraverse (Compose . fmap g . f) = Compose . fmap (btraverse g) . btraverse f -- composition

There is a default btraverse implementation for Generic types, so instances can derived automatically.

Minimal complete definition

Nothing

Methods

btraverse :: Applicative e => ( forall (a :: k). f a -> e (g a)) -> b f -> e (b g) Source #

Instances

Instances details
TraversableB ( Proxy :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.TraversableB

Methods

btraverse :: Applicative e => ( forall (a :: k0). f a -> e (g a)) -> Proxy f -> e ( Proxy g) Source #

TraversableB ( Constant a :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.TraversableB

Methods

btraverse :: Applicative e => ( forall (a0 :: k0). f a0 -> e (g a0)) -> Constant a f -> e ( Constant a g) Source #

TraversableB ( Const a :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.TraversableB

Methods

btraverse :: Applicative e => ( forall (a0 :: k0). f a0 -> e (g a0)) -> Const a f -> e ( Const a g) Source #

( TraversableB a, TraversableB b) => TraversableB ( Sum a b :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.TraversableB

Methods

btraverse :: Applicative e => ( forall (a0 :: k0). f a0 -> e (g a0)) -> Sum a b f -> e ( Sum a b g) Source #

( TraversableB a, TraversableB b) => TraversableB ( Product a b :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.TraversableB

Methods

btraverse :: Applicative e => ( forall (a0 :: k0). f a0 -> e (g a0)) -> Product a b f -> e ( Product a b g) Source #

( Traversable f, TraversableB b) => TraversableB ( Compose f b :: (k -> Type ) -> Type )
Instance details

Defined in Barbies.Internal.TraversableB

Methods

btraverse :: Applicative e => ( forall (a :: k0). f0 a -> e (g a)) -> Compose f b f0 -> e ( Compose f b g) Source #

TraversableB ( Var a :: ( Type -> Type ) -> Type ) Source #
Instance details

Defined in Hedgehog.Internal.State

Methods

btraverse :: Applicative e => ( forall (a0 :: k). f a0 -> e (g a0)) -> Var a f -> e ( Var a g) Source #

newtype Rec p a (x :: k) Source #

Constructors

Rec

Fields

Instances

Instances details
GConstraints n (c :: k1 -> Constraint ) (f :: k2) ( Rec a' a :: Type -> Type ) ( Rec b' b :: k3 -> Type ) ( Rec b' b :: k3 -> Type )
Instance details

Defined in Barbies.Generics.Constraints

Methods

gaddDicts :: forall (x :: k20). GAll n c ( Rec a' a) => Rec b' b x -> Rec b' b x Source #

GConstraints n (c :: k1 -> Constraint ) (f :: k1 -> Type ) ( Rec (P n ( X :: k1 -> Type ) a') ( X a) :: Type -> Type ) ( Rec (P n f a') (f a) :: k2 -> Type ) ( Rec (P n ( Product ( Dict c) f) a') ( Product ( Dict c) f a) :: k2 -> Type )
Instance details

Defined in Barbies.Generics.Constraints

Methods

gaddDicts :: forall (x :: k20). GAll n c ( Rec (P n X a') ( X a)) => Rec (P n f a') (f a) x -> Rec (P n ( Product ( Dict c) f) a') ( Product ( Dict c) f a) x Source #

type GAll n (c :: k -> Constraint ) ( Rec l r :: Type -> Type )
Instance details

Defined in Barbies.Generics.Constraints

type GAll n (c :: k -> Constraint ) ( Rec l r :: Type -> Type ) = GAllRec n c l r