lattices-2.1: Fine-grained library for constructing and manipulating lattices
Copyright (C) 2010-2015 Maximilian Bolingbroke 2015-2019 Oleg Grenrus
License BSD-3-Clause (see the file LICENSE)
Maintainer Oleg Grenrus <oleg.grenrus@iki.fi>
Safe Haskell Safe
Language Haskell2010

Algebra.Lattice.Divisibility

Description

Synopsis

Documentation

newtype Divisibility a Source #

A divisibility lattice. join = lcm , meet = gcd .

Constructors

Divisibility

Fields

Instances

Instances details
Monad Divisibility Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Functor Divisibility Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Applicative Divisibility Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Foldable Divisibility Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Traversable Divisibility Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Eq a => Eq ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Data a => Data ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Methods

gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g. g -> c g) -> Divisibility a -> c ( Divisibility a) Source #

gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c ( Divisibility a) Source #

toConstr :: Divisibility a -> Constr Source #

dataTypeOf :: Divisibility a -> DataType Source #

dataCast1 :: Typeable t => ( forall d. Data d => c (t d)) -> Maybe (c ( Divisibility a)) Source #

dataCast2 :: Typeable t => ( forall d e. ( Data d, Data e) => c (t d e)) -> Maybe (c ( Divisibility a)) Source #

gmapT :: ( forall b. Data b => b -> b) -> Divisibility a -> Divisibility a Source #

gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> Divisibility a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> Divisibility a -> r Source #

gmapQ :: ( forall d. Data d => d -> u) -> Divisibility a -> [u] Source #

gmapQi :: Int -> ( forall d. Data d => d -> u) -> Divisibility a -> u Source #

gmapM :: Monad m => ( forall d. Data d => d -> m d) -> Divisibility a -> m ( Divisibility a) Source #

gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> Divisibility a -> m ( Divisibility a) Source #

gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> Divisibility a -> m ( Divisibility a) Source #

Ord a => Ord ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Read a => Read ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Show a => Show ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Generic ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Associated Types

type Rep ( Divisibility a) :: Type -> Type Source #

Function a => Function ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

( Arbitrary a, Num a, Ord a) => Arbitrary ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

CoArbitrary a => CoArbitrary ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

NFData a => NFData ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Hashable a => Hashable ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Universe a => Universe ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Finite a => Finite ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

( Eq a, Integral a) => PartialOrd ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Integral a => BoundedJoinSemiLattice ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Integral a => Lattice ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Generic1 Divisibility Source #
Instance details

Defined in Algebra.Lattice.Divisibility

Associated Types

type Rep1 Divisibility :: k -> Type Source #

type Rep ( Divisibility a) Source #
Instance details

Defined in Algebra.Lattice.Divisibility

type Rep ( Divisibility a) = D1 (' MetaData "Divisibility" "Algebra.Lattice.Divisibility" "lattices-2.1-Aj77JapAM1ZIiO74F5gL5i" ' True ) ( C1 (' MetaCons "Divisibility" ' PrefixI ' True ) ( S1 (' MetaSel (' Just "getDivisibility") ' NoSourceUnpackedness ' NoSourceStrictness ' DecidedLazy ) ( Rec0 a)))
type Rep1 Divisibility Source #
Instance details

Defined in Algebra.Lattice.Divisibility

type Rep1 Divisibility = D1 (' MetaData "Divisibility" "Algebra.Lattice.Divisibility" "lattices-2.1-Aj77JapAM1ZIiO74F5gL5i" ' True ) ( C1 (' MetaCons "Divisibility" ' PrefixI ' True ) ( S1 (' MetaSel (' Just "getDivisibility") ' NoSourceUnpackedness ' NoSourceStrictness ' DecidedLazy ) Par1 ))