Copyright | (C) 2019 Oleg Grenrus |
---|---|
License | BSD-3-Clause (see the file LICENSE) |
Maintainer | Oleg Grenrus <oleg.grenrus@iki.fi> |
Safe Haskell | Safe |
Language | Haskell2010 |
Documentation
\(M_2\)
is isomorphic to
\(\mathcal{P}\{\mathbb{B}\}\)
, i.e. powerset of
Bool
.
Instances
Bounded M2 Source # | |
Enum M2 Source # | |
Defined in Algebra.Lattice.M2 |
|
Eq M2 Source # | |
Data M2 Source # | |
Defined in Algebra.Lattice.M2 gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g. g -> c g) -> M2 -> c M2 Source # gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c M2 Source # toConstr :: M2 -> Constr Source # dataTypeOf :: M2 -> DataType Source # dataCast1 :: Typeable t => ( forall d. Data d => c (t d)) -> Maybe (c M2 ) Source # dataCast2 :: Typeable t => ( forall d e. ( Data d, Data e) => c (t d e)) -> Maybe (c M2 ) Source # gmapT :: ( forall b. Data b => b -> b) -> M2 -> M2 Source # gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> M2 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> M2 -> r Source # gmapQ :: ( forall d. Data d => d -> u) -> M2 -> [u] Source # gmapQi :: Int -> ( forall d. Data d => d -> u) -> M2 -> u Source # gmapM :: Monad m => ( forall d. Data d => d -> m d) -> M2 -> m M2 Source # gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> M2 -> m M2 Source # gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> M2 -> m M2 Source # |
|
Ord M2 Source # | |
Read M2 Source # | |
Show M2 Source # | |
Generic M2 Source # | |
Function M2 Source # | |
Arbitrary M2 Source # | |
CoArbitrary M2 Source # | |
Defined in Algebra.Lattice.M2 |
|
NFData M2 Source # | |
Defined in Algebra.Lattice.M2 |
|
Hashable M2 Source # | |
Universe M2 Source # | |
Defined in Algebra.Lattice.M2 |
|
Finite M2 Source # | |
PartialOrd M2 Source # | |
BoundedMeetSemiLattice M2 Source # | |
Defined in Algebra.Lattice.M2 |
|
BoundedJoinSemiLattice M2 Source # | |
Defined in Algebra.Lattice.M2 |
|
Lattice M2 Source # | |
Heyting M2 Source # | |
type Rep M2 Source # | |
Defined in Algebra.Lattice.M2
type
Rep
M2
=
D1
('
MetaData
"M2" "Algebra.Lattice.M2" "lattices-2.1-Aj77JapAM1ZIiO74F5gL5i" '
False
) ((
C1
('
MetaCons
"M2o" '
PrefixI
'
False
) (
U1
::
Type
->
Type
)
:+:
C1
('
MetaCons
"M2a" '
PrefixI
'
False
) (
U1
::
Type
->
Type
))
:+:
(
C1
('
MetaCons
"M2b" '
PrefixI
'
False
) (
U1
::
Type
->
Type
)
:+:
C1
('
MetaCons
"M2i" '
PrefixI
'
False
) (
U1
::
Type
->
Type
)))
|