lattices-2.1: Fine-grained library for constructing and manipulating lattices
Copyright (C) 2019 Oleg Grenrus
License BSD-3-Clause (see the file LICENSE)
Maintainer Oleg Grenrus <oleg.grenrus@iki.fi>
Safe Haskell Safe
Language Haskell2010

Algebra.Lattice.ZeroHalfOne

Description

Synopsis

Documentation

data ZeroHalfOne Source #

The simplest Heyting algebra that is not already a Boolean algebra is the totally ordered set \(\{ 0, \frac{1}{2}, 1 \}\) .

Instances

Instances details
Bounded ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Enum ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Eq ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Data ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Methods

gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g. g -> c g) -> ZeroHalfOne -> c ZeroHalfOne Source #

gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c ZeroHalfOne Source #

toConstr :: ZeroHalfOne -> Constr Source #

dataTypeOf :: ZeroHalfOne -> DataType Source #

dataCast1 :: Typeable t => ( forall d. Data d => c (t d)) -> Maybe (c ZeroHalfOne ) Source #

dataCast2 :: Typeable t => ( forall d e. ( Data d, Data e) => c (t d e)) -> Maybe (c ZeroHalfOne ) Source #

gmapT :: ( forall b. Data b => b -> b) -> ZeroHalfOne -> ZeroHalfOne Source #

gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> ZeroHalfOne -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> ZeroHalfOne -> r Source #

gmapQ :: ( forall d. Data d => d -> u) -> ZeroHalfOne -> [u] Source #

gmapQi :: Int -> ( forall d. Data d => d -> u) -> ZeroHalfOne -> u Source #

gmapM :: Monad m => ( forall d. Data d => d -> m d) -> ZeroHalfOne -> m ZeroHalfOne Source #

gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> ZeroHalfOne -> m ZeroHalfOne Source #

gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> ZeroHalfOne -> m ZeroHalfOne Source #

Ord ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Read ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Show ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Generic ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Function ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Arbitrary ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

CoArbitrary ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

NFData ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Hashable ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Universe ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Finite ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

PartialOrd ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

BoundedMeetSemiLattice ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

BoundedJoinSemiLattice ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Lattice ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

Heyting ZeroHalfOne Source #

Not boolean: neg Half \/ Half = Half /= One

Instance details

Defined in Algebra.Lattice.ZeroHalfOne

type Rep ZeroHalfOne Source #
Instance details

Defined in Algebra.Lattice.ZeroHalfOne

type Rep ZeroHalfOne = D1 (' MetaData "ZeroHalfOne" "Algebra.Lattice.ZeroHalfOne" "lattices-2.1-Aj77JapAM1ZIiO74F5gL5i" ' False ) ( C1 (' MetaCons "Zero" ' PrefixI ' False ) ( U1 :: Type -> Type ) :+: ( C1 (' MetaCons "Half" ' PrefixI ' False ) ( U1 :: Type -> Type ) :+: C1 (' MetaCons "One" ' PrefixI ' False ) ( U1 :: Type -> Type )))