ouroboros-network-framework-0.1.0.1
Safe Haskell Safe-Inferred
Language Haskell2010

Data.Wedge

Description

This module is a simplified version of https://hackage.haskell.org/package/smash/docs/Data-Wedge.html#t:Wedge , which is copyrighted by Emily Pillmore and originally pulished using BSD-3-Clause license.

copyright: Emily Pillmore 2020-2021, iohk 2021

Synopsis

Documentation

data Wedge a b Source #

Constructors

Nowhere
Here a
There b

Instances

Instances details
Bifunctor Wedge Source #
Instance details

Defined in Data.Wedge

Methods

bimap :: (a -> b) -> (c -> d) -> Wedge a c -> Wedge b d Source #

first :: (a -> b) -> Wedge a c -> Wedge b c Source #

second :: (b -> c) -> Wedge a b -> Wedge a c Source #

Bitraversable Wedge Source #
Instance details

Defined in Data.Wedge

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Wedge a b -> f ( Wedge c d) Source #

Bifoldable Wedge Source #
Instance details

Defined in Data.Wedge

Methods

bifold :: Monoid m => Wedge m m -> m Source #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Wedge a b -> m Source #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Wedge a b -> c Source #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Wedge a b -> c Source #

Monad ( Wedge a) Source #
Instance details

Defined in Data.Wedge

Functor ( Wedge a) Source #
Instance details

Defined in Data.Wedge

Methods

fmap :: (a0 -> b) -> Wedge a a0 -> Wedge a b Source #

(<$) :: a0 -> Wedge a b -> Wedge a a0 Source #

Applicative ( Wedge a) Source #
Instance details

Defined in Data.Wedge

Foldable ( Wedge a) Source #
Instance details

Defined in Data.Wedge

Methods

fold :: Monoid m => Wedge a m -> m Source #

foldMap :: Monoid m => (a0 -> m) -> Wedge a a0 -> m Source #

foldMap' :: Monoid m => (a0 -> m) -> Wedge a a0 -> m Source #

foldr :: (a0 -> b -> b) -> b -> Wedge a a0 -> b Source #

foldr' :: (a0 -> b -> b) -> b -> Wedge a a0 -> b Source #

foldl :: (b -> a0 -> b) -> b -> Wedge a a0 -> b Source #

foldl' :: (b -> a0 -> b) -> b -> Wedge a a0 -> b Source #

foldr1 :: (a0 -> a0 -> a0) -> Wedge a a0 -> a0 Source #

foldl1 :: (a0 -> a0 -> a0) -> Wedge a a0 -> a0 Source #

toList :: Wedge a a0 -> [a0] Source #

null :: Wedge a a0 -> Bool Source #

length :: Wedge a a0 -> Int Source #

elem :: Eq a0 => a0 -> Wedge a a0 -> Bool Source #

maximum :: Ord a0 => Wedge a a0 -> a0 Source #

minimum :: Ord a0 => Wedge a a0 -> a0 Source #

sum :: Num a0 => Wedge a a0 -> a0 Source #

product :: Num a0 => Wedge a a0 -> a0 Source #

( Eq a, Eq b) => Eq ( Wedge a b) Source #
Instance details

Defined in Data.Wedge

( Ord a, Ord b) => Ord ( Wedge a b) Source #
Instance details

Defined in Data.Wedge

( Show a, Show b) => Show ( Wedge a b) Source #
Instance details

Defined in Data.Wedge