{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Ouroboros.Network.PeerSelection.Governor.RootPeers (belowTarget) where
import Data.Semigroup (Min (..))
import qualified Data.Set as Set
import Control.Concurrent.JobPool (Job (..))
import Control.Exception (SomeException, assert)
import Control.Monad.Class.MonadSTM
import Control.Monad.Class.MonadTime
import Ouroboros.Network.PeerSelection.Governor.Types
import qualified Ouroboros.Network.PeerSelection.KnownPeers as KnownPeers
import qualified Ouroboros.Network.PeerSelection.LocalRootPeers as LocalRootPeers
belowTarget :: (MonadSTM m, Ord peeraddr)
=> PeerSelectionActions peeraddr peerconn m
-> Time
-> PeerSelectionState peeraddr peerconn
-> Guarded (STM m) (TimedDecision m peeraddr peerconn)
belowTarget :: PeerSelectionActions peeraddr peerconn m
-> Time
-> PeerSelectionState peeraddr peerconn
-> Guarded (STM m) (TimedDecision m peeraddr peerconn)
belowTarget PeerSelectionActions peeraddr peerconn m
actions
Time
blockedAt
st :: PeerSelectionState peeraddr peerconn
st@PeerSelectionState {
LocalRootPeers peeraddr
localRootPeers :: forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> LocalRootPeers peeraddr
localRootPeers :: LocalRootPeers peeraddr
localRootPeers,
Set peeraddr
publicRootPeers :: forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> Set peeraddr
publicRootPeers :: Set peeraddr
publicRootPeers,
Time
publicRootRetryTime :: forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> Time
publicRootRetryTime :: Time
publicRootRetryTime,
Bool
inProgressPublicRootsReq :: forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> Bool
inProgressPublicRootsReq :: Bool
inProgressPublicRootsReq,
targets :: forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> PeerSelectionTargets
targets = PeerSelectionTargets {
Int
targetNumberOfRootPeers :: PeerSelectionTargets -> Int
targetNumberOfRootPeers :: Int
targetNumberOfRootPeers
}
}
| Int
maxExtraRootPeers Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0
, Bool -> Bool
not Bool
inProgressPublicRootsReq
, Time
blockedAt Time -> Time -> Bool
forall a. Ord a => a -> a -> Bool
>= Time
publicRootRetryTime
= Maybe (Min Time)
-> STM m (TimedDecision m peeraddr peerconn)
-> Guarded (STM m) (TimedDecision m peeraddr peerconn)
forall (m :: * -> *) a. Maybe (Min Time) -> m a -> Guarded m a
Guarded Maybe (Min Time)
forall a. Maybe a
Nothing (STM m (TimedDecision m peeraddr peerconn)
-> Guarded (STM m) (TimedDecision m peeraddr peerconn))
-> STM m (TimedDecision m peeraddr peerconn)
-> Guarded (STM m) (TimedDecision m peeraddr peerconn)
forall a b. (a -> b) -> a -> b
$
TimedDecision m peeraddr peerconn
-> STM m (TimedDecision m peeraddr peerconn)
forall (m :: * -> *) a. Monad m => a -> m a
return (TimedDecision m peeraddr peerconn
-> STM m (TimedDecision m peeraddr peerconn))
-> TimedDecision m peeraddr peerconn
-> STM m (TimedDecision m peeraddr peerconn)
forall a b. (a -> b) -> a -> b
$ \Time
_now -> Decision :: forall (m :: * -> *) peeraddr peerconn.
TracePeerSelection peeraddr
-> PeerSelectionState peeraddr peerconn
-> [Job () m (Completion m peeraddr peerconn)]
-> Decision m peeraddr peerconn
Decision {
decisionTrace :: TracePeerSelection peeraddr
decisionTrace = Int -> Int -> TracePeerSelection peeraddr
forall peeraddr. Int -> Int -> TracePeerSelection peeraddr
TracePublicRootsRequest
Int
targetNumberOfRootPeers
Int
numRootPeers,
decisionState :: PeerSelectionState peeraddr peerconn
decisionState = PeerSelectionState peeraddr peerconn
st { inProgressPublicRootsReq :: Bool
inProgressPublicRootsReq = Bool
True },
decisionJobs :: [Job () m (Completion m peeraddr peerconn)]
decisionJobs = [PeerSelectionActions peeraddr peerconn m
-> Int -> Job () m (Completion m peeraddr peerconn)
forall (m :: * -> *) peeraddr peerconn.
(Monad m, Ord peeraddr) =>
PeerSelectionActions peeraddr peerconn m
-> Int -> Job () m (Completion m peeraddr peerconn)
jobReqPublicRootPeers PeerSelectionActions peeraddr peerconn m
actions Int
maxExtraRootPeers]
}
| Int
maxExtraRootPeers Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0
, Bool -> Bool
not Bool
inProgressPublicRootsReq
= Maybe (Min Time)
-> Guarded (STM m) (TimedDecision m peeraddr peerconn)
forall (m :: * -> *) a. Maybe (Min Time) -> Guarded m a
GuardedSkip (Min Time -> Maybe (Min Time)
forall a. a -> Maybe a
Just (Time -> Min Time
forall a. a -> Min a
Min Time
publicRootRetryTime))
| Bool
otherwise
= Maybe (Min Time)
-> Guarded (STM m) (TimedDecision m peeraddr peerconn)
forall (m :: * -> *) a. Maybe (Min Time) -> Guarded m a
GuardedSkip Maybe (Min Time)
forall a. Maybe a
Nothing
where
numRootPeers :: Int
numRootPeers = LocalRootPeers peeraddr -> Int
forall peeraddr. LocalRootPeers peeraddr -> Int
LocalRootPeers.size LocalRootPeers peeraddr
localRootPeers
Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Set peeraddr -> Int
forall a. Set a -> Int
Set.size Set peeraddr
publicRootPeers
maxExtraRootPeers :: Int
maxExtraRootPeers = Int
targetNumberOfRootPeers Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
numRootPeers
jobReqPublicRootPeers :: forall m peeraddr peerconn.
(Monad m, Ord peeraddr)
=> PeerSelectionActions peeraddr peerconn m
-> Int
-> Job () m (Completion m peeraddr peerconn)
jobReqPublicRootPeers :: PeerSelectionActions peeraddr peerconn m
-> Int -> Job () m (Completion m peeraddr peerconn)
jobReqPublicRootPeers PeerSelectionActions{Int -> m (Set peeraddr, DiffTime)
requestPublicRootPeers :: forall peeraddr peerconn (m :: * -> *).
PeerSelectionActions peeraddr peerconn m
-> Int -> m (Set peeraddr, DiffTime)
requestPublicRootPeers :: Int -> m (Set peeraddr, DiffTime)
requestPublicRootPeers}
Int
numExtraAllowed =
m (Completion m peeraddr peerconn)
-> (SomeException -> m (Completion m peeraddr peerconn))
-> ()
-> String
-> Job () m (Completion m peeraddr peerconn)
forall group (m :: * -> *) a.
m a -> (SomeException -> m a) -> group -> String -> Job group m a
Job m (Completion m peeraddr peerconn)
job (Completion m peeraddr peerconn
-> m (Completion m peeraddr peerconn)
forall (m :: * -> *) a. Monad m => a -> m a
return (Completion m peeraddr peerconn
-> m (Completion m peeraddr peerconn))
-> (SomeException -> Completion m peeraddr peerconn)
-> SomeException
-> m (Completion m peeraddr peerconn)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SomeException -> Completion m peeraddr peerconn
handler) () String
"reqPublicRootPeers"
where
handler :: SomeException -> Completion m peeraddr peerconn
handler :: SomeException -> Completion m peeraddr peerconn
handler SomeException
e =
(PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn
forall (m :: * -> *) peeraddr peerconn.
(PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn
Completion ((PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn)
-> (PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn
forall a b. (a -> b) -> a -> b
$ \PeerSelectionState peeraddr peerconn
st Time
now ->
let publicRootBackoffs' :: Int
publicRootBackoffs' :: Int
publicRootBackoffs' = (PeerSelectionState peeraddr peerconn -> Int
forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> Int
publicRootBackoffs PeerSelectionState peeraddr peerconn
st Int -> Int -> Int
forall a. Ord a => a -> a -> a
`min` Int
0) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
publicRootRetryDiffTime' :: DiffTime
publicRootRetryDiffTime' :: DiffTime
publicRootRetryDiffTime' = DiffTime
2 DiffTime -> Int -> DiffTime
forall a b. (Num a, Integral b) => a -> b -> a
^ (Int -> Int
forall a. Num a => a -> a
abs Int
publicRootBackoffs' Int -> Int -> Int
forall a. Ord a => a -> a -> a
`min` Int
12)
publicRootRetryTime' :: Time
publicRootRetryTime' :: Time
publicRootRetryTime' = DiffTime -> Time -> Time
addTime DiffTime
publicRootRetryDiffTime' Time
now
in Decision :: forall (m :: * -> *) peeraddr peerconn.
TracePeerSelection peeraddr
-> PeerSelectionState peeraddr peerconn
-> [Job () m (Completion m peeraddr peerconn)]
-> Decision m peeraddr peerconn
Decision {
decisionTrace :: TracePeerSelection peeraddr
decisionTrace = SomeException -> Int -> DiffTime -> TracePeerSelection peeraddr
forall peeraddr.
SomeException -> Int -> DiffTime -> TracePeerSelection peeraddr
TracePublicRootsFailure
SomeException
e
Int
publicRootBackoffs'
DiffTime
publicRootRetryDiffTime',
decisionState :: PeerSelectionState peeraddr peerconn
decisionState = PeerSelectionState peeraddr peerconn
st {
inProgressPublicRootsReq :: Bool
inProgressPublicRootsReq = Bool
False,
publicRootBackoffs :: Int
publicRootBackoffs = Int
publicRootBackoffs',
publicRootRetryTime :: Time
publicRootRetryTime = Time
publicRootRetryTime'
},
decisionJobs :: [Job () m (Completion m peeraddr peerconn)]
decisionJobs = []
}
job :: m (Completion m peeraddr peerconn)
job :: m (Completion m peeraddr peerconn)
job = do
(Set peeraddr
results, DiffTime
ttl) <- Int -> m (Set peeraddr, DiffTime)
requestPublicRootPeers Int
numExtraAllowed
Completion m peeraddr peerconn
-> m (Completion m peeraddr peerconn)
forall (m :: * -> *) a. Monad m => a -> m a
return (Completion m peeraddr peerconn
-> m (Completion m peeraddr peerconn))
-> Completion m peeraddr peerconn
-> m (Completion m peeraddr peerconn)
forall a b. (a -> b) -> a -> b
$ (PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn
forall (m :: * -> *) peeraddr peerconn.
(PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn
Completion ((PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn)
-> (PeerSelectionState peeraddr peerconn
-> Time -> Decision m peeraddr peerconn)
-> Completion m peeraddr peerconn
forall a b. (a -> b) -> a -> b
$ \PeerSelectionState peeraddr peerconn
st Time
now ->
let newPeers :: Set peeraddr
newPeers = Set peeraddr
results Set peeraddr -> Set peeraddr -> Set peeraddr
forall a. Ord a => Set a -> Set a -> Set a
Set.\\ LocalRootPeers peeraddr -> Set peeraddr
forall peeraddr. LocalRootPeers peeraddr -> Set peeraddr
LocalRootPeers.keysSet (PeerSelectionState peeraddr peerconn -> LocalRootPeers peeraddr
forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> LocalRootPeers peeraddr
localRootPeers PeerSelectionState peeraddr peerconn
st)
Set peeraddr -> Set peeraddr -> Set peeraddr
forall a. Ord a => Set a -> Set a -> Set a
Set.\\ PeerSelectionState peeraddr peerconn -> Set peeraddr
forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> Set peeraddr
publicRootPeers PeerSelectionState peeraddr peerconn
st
publicRootPeers' :: Set peeraddr
publicRootPeers' = PeerSelectionState peeraddr peerconn -> Set peeraddr
forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> Set peeraddr
publicRootPeers PeerSelectionState peeraddr peerconn
st Set peeraddr -> Set peeraddr -> Set peeraddr
forall a. Semigroup a => a -> a -> a
<> Set peeraddr
newPeers
knownPeers' :: KnownPeers peeraddr
knownPeers' = Set peeraddr -> KnownPeers peeraddr -> KnownPeers peeraddr
forall peeraddr.
Ord peeraddr =>
Set peeraddr -> KnownPeers peeraddr -> KnownPeers peeraddr
KnownPeers.insert
Set peeraddr
newPeers
(PeerSelectionState peeraddr peerconn -> KnownPeers peeraddr
forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> KnownPeers peeraddr
knownPeers PeerSelectionState peeraddr peerconn
st)
publicRootBackoffs' :: Int
publicRootBackoffs' :: Int
publicRootBackoffs'
| Set peeraddr -> Bool
forall a. Set a -> Bool
Set.null Set peeraddr
newPeers = (PeerSelectionState peeraddr peerconn -> Int
forall peeraddr peerconn.
PeerSelectionState peeraddr peerconn -> Int
publicRootBackoffs PeerSelectionState peeraddr peerconn
st Int -> Int -> Int
forall a. Ord a => a -> a -> a
`max` Int
0) Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
| Bool
otherwise = Int
0
publicRootRetryDiffTime :: DiffTime
publicRootRetryDiffTime :: DiffTime
publicRootRetryDiffTime
| Int
publicRootBackoffs' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
= DiffTime
ttl
| Bool
otherwise = DiffTime
2DiffTime -> Int -> DiffTime
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
publicRootBackoffs' Int -> Int -> Int
forall a. Ord a => a -> a -> a
`min` Int
12)
publicRootRetryTime :: Time
publicRootRetryTime :: Time
publicRootRetryTime = DiffTime -> Time -> Time
addTime DiffTime
publicRootRetryDiffTime Time
now
in Bool
-> Decision m peeraddr peerconn -> Decision m peeraddr peerconn
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Set peeraddr -> Set peeraddr -> Bool
forall a. Ord a => Set a -> Set a -> Bool
Set.isSubsetOf
Set peeraddr
publicRootPeers'
(KnownPeers peeraddr -> Set peeraddr
forall peeraddr. KnownPeers peeraddr -> Set peeraddr
KnownPeers.toSet KnownPeers peeraddr
knownPeers'))
Decision :: forall (m :: * -> *) peeraddr peerconn.
TracePeerSelection peeraddr
-> PeerSelectionState peeraddr peerconn
-> [Job () m (Completion m peeraddr peerconn)]
-> Decision m peeraddr peerconn
Decision {
decisionTrace :: TracePeerSelection peeraddr
decisionTrace = Set peeraddr -> Int -> DiffTime -> TracePeerSelection peeraddr
forall peeraddr.
Set peeraddr -> Int -> DiffTime -> TracePeerSelection peeraddr
TracePublicRootsResults
Set peeraddr
newPeers
Int
publicRootBackoffs'
DiffTime
publicRootRetryDiffTime,
decisionState :: PeerSelectionState peeraddr peerconn
decisionState = PeerSelectionState peeraddr peerconn
st {
publicRootPeers :: Set peeraddr
publicRootPeers = Set peeraddr
publicRootPeers',
knownPeers :: KnownPeers peeraddr
knownPeers = KnownPeers peeraddr
knownPeers',
publicRootBackoffs :: Int
publicRootBackoffs = Int
publicRootBackoffs',
publicRootRetryTime :: Time
publicRootRetryTime = Time
publicRootRetryTime,
inProgressPublicRootsReq :: Bool
inProgressPublicRootsReq = Bool
False
},
decisionJobs :: [Job () m (Completion m peeraddr peerconn)]
decisionJobs = []
}