{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Data.RAList.NonEmpty.Internal (
NERAList (..),
NERAList' (..),
explicitShow,
explicitShowsPrec,
singleton,
cons,
(!),
(!?),
head,
last,
length,
null,
toNonEmpty,
toList,
fromNonEmpty,
foldMap1,
foldr1Map,
ifoldMap,
ifoldMap1,
ifoldr1Map,
adjust,
map,
imap,
itraverse,
#ifdef MIN_VERSION_semigroupoids
itraverse1,
#endif
) where
import Prelude
(Bool (..), Eq, Functor (..), Int, Maybe, Num (..), Ord (..), Show (..),
ShowS, String, otherwise, seq, showParen, showString, ($), (.))
import Control.Applicative (Applicative (..), (<$>))
import Control.DeepSeq (NFData (..))
import Control.Exception (ArrayException (IndexOutOfBounds), throw)
import Data.Hashable (Hashable (..))
import Data.List.NonEmpty (NonEmpty (..))
import Data.Maybe (fromMaybe)
import Data.Monoid (Monoid (..))
import Data.Semigroup (Semigroup (..))
import qualified Data.Foldable as I (Foldable (..))
import qualified Data.List.NonEmpty as NEList
import qualified Data.Traversable as I (Traversable (..))
import qualified Test.QuickCheck as QC
#ifdef MIN_VERSION_semigroupoids
import Data.Functor.Apply (Apply (..))
import qualified Data.Semigroup.Foldable as I (Foldable1 (..))
import qualified Data.Semigroup.Traversable as I (Traversable1 (..))
#endif
#if !MIN_VERSION_base(4,11,0)
import Data.Semigroup (WrappedMonoid (..))
#endif
import qualified Data.RAList.Tree.Internal as Tr
import Data.RAList.Tree (Leaf (..), Node (..))
newtype NERAList a = NE (NERAList' Leaf a)
deriving (NERAList a -> NERAList a -> Bool
(NERAList a -> NERAList a -> Bool)
-> (NERAList a -> NERAList a -> Bool) -> Eq (NERAList a)
forall a. Eq a => NERAList a -> NERAList a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: NERAList a -> NERAList a -> Bool
$c/= :: forall a. Eq a => NERAList a -> NERAList a -> Bool
== :: NERAList a -> NERAList a -> Bool
$c== :: forall a. Eq a => NERAList a -> NERAList a -> Bool
Eq, Eq (NERAList a)
Eq (NERAList a)
-> (NERAList a -> NERAList a -> Ordering)
-> (NERAList a -> NERAList a -> Bool)
-> (NERAList a -> NERAList a -> Bool)
-> (NERAList a -> NERAList a -> Bool)
-> (NERAList a -> NERAList a -> Bool)
-> (NERAList a -> NERAList a -> NERAList a)
-> (NERAList a -> NERAList a -> NERAList a)
-> Ord (NERAList a)
NERAList a -> NERAList a -> Bool
NERAList a -> NERAList a -> Ordering
NERAList a -> NERAList a -> NERAList a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a. Ord a => Eq (NERAList a)
forall a. Ord a => NERAList a -> NERAList a -> Bool
forall a. Ord a => NERAList a -> NERAList a -> Ordering
forall a. Ord a => NERAList a -> NERAList a -> NERAList a
min :: NERAList a -> NERAList a -> NERAList a
$cmin :: forall a. Ord a => NERAList a -> NERAList a -> NERAList a
max :: NERAList a -> NERAList a -> NERAList a
$cmax :: forall a. Ord a => NERAList a -> NERAList a -> NERAList a
>= :: NERAList a -> NERAList a -> Bool
$c>= :: forall a. Ord a => NERAList a -> NERAList a -> Bool
> :: NERAList a -> NERAList a -> Bool
$c> :: forall a. Ord a => NERAList a -> NERAList a -> Bool
<= :: NERAList a -> NERAList a -> Bool
$c<= :: forall a. Ord a => NERAList a -> NERAList a -> Bool
< :: NERAList a -> NERAList a -> Bool
$c< :: forall a. Ord a => NERAList a -> NERAList a -> Bool
compare :: NERAList a -> NERAList a -> Ordering
$ccompare :: forall a. Ord a => NERAList a -> NERAList a -> Ordering
$cp1Ord :: forall a. Ord a => Eq (NERAList a)
Ord, a -> NERAList b -> NERAList a
(a -> b) -> NERAList a -> NERAList b
(forall a b. (a -> b) -> NERAList a -> NERAList b)
-> (forall a b. a -> NERAList b -> NERAList a) -> Functor NERAList
forall a b. a -> NERAList b -> NERAList a
forall a b. (a -> b) -> NERAList a -> NERAList b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> NERAList b -> NERAList a
$c<$ :: forall a b. a -> NERAList b -> NERAList a
fmap :: (a -> b) -> NERAList a -> NERAList b
$cfmap :: forall a b. (a -> b) -> NERAList a -> NERAList b
Functor, Functor NERAList
Foldable NERAList
Functor NERAList
-> Foldable NERAList
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> NERAList a -> f (NERAList b))
-> (forall (f :: * -> *) a.
Applicative f =>
NERAList (f a) -> f (NERAList a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> NERAList a -> m (NERAList b))
-> (forall (m :: * -> *) a.
Monad m =>
NERAList (m a) -> m (NERAList a))
-> Traversable NERAList
(a -> f b) -> NERAList a -> f (NERAList b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => NERAList (m a) -> m (NERAList a)
forall (f :: * -> *) a.
Applicative f =>
NERAList (f a) -> f (NERAList a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> NERAList a -> m (NERAList b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> NERAList a -> f (NERAList b)
sequence :: NERAList (m a) -> m (NERAList a)
$csequence :: forall (m :: * -> *) a. Monad m => NERAList (m a) -> m (NERAList a)
mapM :: (a -> m b) -> NERAList a -> m (NERAList b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> NERAList a -> m (NERAList b)
sequenceA :: NERAList (f a) -> f (NERAList a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
NERAList (f a) -> f (NERAList a)
traverse :: (a -> f b) -> NERAList a -> f (NERAList b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> NERAList a -> f (NERAList b)
$cp2Traversable :: Foldable NERAList
$cp1Traversable :: Functor NERAList
I.Traversable)
data NERAList' f a
= Last (f a)
| Cons0 (NERAList' (Node f) a)
| Cons1 (f a) (NERAList' (Node f) a)
deriving (NERAList' f a -> NERAList' f a -> Bool
(NERAList' f a -> NERAList' f a -> Bool)
-> (NERAList' f a -> NERAList' f a -> Bool) -> Eq (NERAList' f a)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall (f :: * -> *) a.
Eq (f a) =>
NERAList' f a -> NERAList' f a -> Bool
/= :: NERAList' f a -> NERAList' f a -> Bool
$c/= :: forall (f :: * -> *) a.
Eq (f a) =>
NERAList' f a -> NERAList' f a -> Bool
== :: NERAList' f a -> NERAList' f a -> Bool
$c== :: forall (f :: * -> *) a.
Eq (f a) =>
NERAList' f a -> NERAList' f a -> Bool
Eq, Int -> NERAList' f a -> ShowS
[NERAList' f a] -> ShowS
NERAList' f a -> String
(Int -> NERAList' f a -> ShowS)
-> (NERAList' f a -> String)
-> ([NERAList' f a] -> ShowS)
-> Show (NERAList' f a)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall (f :: * -> *) a. Show (f a) => Int -> NERAList' f a -> ShowS
forall (f :: * -> *) a. Show (f a) => [NERAList' f a] -> ShowS
forall (f :: * -> *) a. Show (f a) => NERAList' f a -> String
showList :: [NERAList' f a] -> ShowS
$cshowList :: forall (f :: * -> *) a. Show (f a) => [NERAList' f a] -> ShowS
show :: NERAList' f a -> String
$cshow :: forall (f :: * -> *) a. Show (f a) => NERAList' f a -> String
showsPrec :: Int -> NERAList' f a -> ShowS
$cshowsPrec :: forall (f :: * -> *) a. Show (f a) => Int -> NERAList' f a -> ShowS
Show, a -> NERAList' f b -> NERAList' f a
(a -> b) -> NERAList' f a -> NERAList' f b
(forall a b. (a -> b) -> NERAList' f a -> NERAList' f b)
-> (forall a b. a -> NERAList' f b -> NERAList' f a)
-> Functor (NERAList' f)
forall a b. a -> NERAList' f b -> NERAList' f a
forall a b. (a -> b) -> NERAList' f a -> NERAList' f b
forall (f :: * -> *) a b.
Functor f =>
a -> NERAList' f b -> NERAList' f a
forall (f :: * -> *) a b.
Functor f =>
(a -> b) -> NERAList' f a -> NERAList' f b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> NERAList' f b -> NERAList' f a
$c<$ :: forall (f :: * -> *) a b.
Functor f =>
a -> NERAList' f b -> NERAList' f a
fmap :: (a -> b) -> NERAList' f a -> NERAList' f b
$cfmap :: forall (f :: * -> *) a b.
Functor f =>
(a -> b) -> NERAList' f a -> NERAList' f b
Functor, NERAList' f a -> Bool
(a -> m) -> NERAList' f a -> m
(a -> b -> b) -> b -> NERAList' f a -> b
(forall m. Monoid m => NERAList' f m -> m)
-> (forall m a. Monoid m => (a -> m) -> NERAList' f a -> m)
-> (forall m a. Monoid m => (a -> m) -> NERAList' f a -> m)
-> (forall a b. (a -> b -> b) -> b -> NERAList' f a -> b)
-> (forall a b. (a -> b -> b) -> b -> NERAList' f a -> b)
-> (forall b a. (b -> a -> b) -> b -> NERAList' f a -> b)
-> (forall b a. (b -> a -> b) -> b -> NERAList' f a -> b)
-> (forall a. (a -> a -> a) -> NERAList' f a -> a)
-> (forall a. (a -> a -> a) -> NERAList' f a -> a)
-> (forall a. NERAList' f a -> [a])
-> (forall a. NERAList' f a -> Bool)
-> (forall a. NERAList' f a -> Int)
-> (forall a. Eq a => a -> NERAList' f a -> Bool)
-> (forall a. Ord a => NERAList' f a -> a)
-> (forall a. Ord a => NERAList' f a -> a)
-> (forall a. Num a => NERAList' f a -> a)
-> (forall a. Num a => NERAList' f a -> a)
-> Foldable (NERAList' f)
forall a. Eq a => a -> NERAList' f a -> Bool
forall a. Num a => NERAList' f a -> a
forall a. Ord a => NERAList' f a -> a
forall m. Monoid m => NERAList' f m -> m
forall a. NERAList' f a -> Bool
forall a. NERAList' f a -> Int
forall a. NERAList' f a -> [a]
forall a. (a -> a -> a) -> NERAList' f a -> a
forall m a. Monoid m => (a -> m) -> NERAList' f a -> m
forall b a. (b -> a -> b) -> b -> NERAList' f a -> b
forall a b. (a -> b -> b) -> b -> NERAList' f a -> b
forall (f :: * -> *) a.
(Foldable f, Eq a) =>
a -> NERAList' f a -> Bool
forall (f :: * -> *) a. (Foldable f, Num a) => NERAList' f a -> a
forall (f :: * -> *) a. (Foldable f, Ord a) => NERAList' f a -> a
forall (f :: * -> *) m.
(Foldable f, Monoid m) =>
NERAList' f m -> m
forall (f :: * -> *) a. Foldable f => NERAList' f a -> Bool
forall (f :: * -> *) a. Foldable f => NERAList' f a -> Int
forall (f :: * -> *) a. Foldable f => NERAList' f a -> [a]
forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> NERAList' f a -> a
forall (f :: * -> *) m a.
(Foldable f, Monoid m) =>
(a -> m) -> NERAList' f a -> m
forall (f :: * -> *) b a.
Foldable f =>
(b -> a -> b) -> b -> NERAList' f a -> b
forall (f :: * -> *) a b.
Foldable f =>
(a -> b -> b) -> b -> NERAList' f a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: NERAList' f a -> a
$cproduct :: forall (f :: * -> *) a. (Foldable f, Num a) => NERAList' f a -> a
sum :: NERAList' f a -> a
$csum :: forall (f :: * -> *) a. (Foldable f, Num a) => NERAList' f a -> a
minimum :: NERAList' f a -> a
$cminimum :: forall (f :: * -> *) a. (Foldable f, Ord a) => NERAList' f a -> a
maximum :: NERAList' f a -> a
$cmaximum :: forall (f :: * -> *) a. (Foldable f, Ord a) => NERAList' f a -> a
elem :: a -> NERAList' f a -> Bool
$celem :: forall (f :: * -> *) a.
(Foldable f, Eq a) =>
a -> NERAList' f a -> Bool
length :: NERAList' f a -> Int
$clength :: forall (f :: * -> *) a. Foldable f => NERAList' f a -> Int
null :: NERAList' f a -> Bool
$cnull :: forall (f :: * -> *) a. Foldable f => NERAList' f a -> Bool
toList :: NERAList' f a -> [a]
$ctoList :: forall (f :: * -> *) a. Foldable f => NERAList' f a -> [a]
foldl1 :: (a -> a -> a) -> NERAList' f a -> a
$cfoldl1 :: forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> NERAList' f a -> a
foldr1 :: (a -> a -> a) -> NERAList' f a -> a
$cfoldr1 :: forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> NERAList' f a -> a
foldl' :: (b -> a -> b) -> b -> NERAList' f a -> b
$cfoldl' :: forall (f :: * -> *) b a.
Foldable f =>
(b -> a -> b) -> b -> NERAList' f a -> b
foldl :: (b -> a -> b) -> b -> NERAList' f a -> b
$cfoldl :: forall (f :: * -> *) b a.
Foldable f =>
(b -> a -> b) -> b -> NERAList' f a -> b
foldr' :: (a -> b -> b) -> b -> NERAList' f a -> b
$cfoldr' :: forall (f :: * -> *) a b.
Foldable f =>
(a -> b -> b) -> b -> NERAList' f a -> b
foldr :: (a -> b -> b) -> b -> NERAList' f a -> b
$cfoldr :: forall (f :: * -> *) a b.
Foldable f =>
(a -> b -> b) -> b -> NERAList' f a -> b
foldMap' :: (a -> m) -> NERAList' f a -> m
$cfoldMap' :: forall (f :: * -> *) m a.
(Foldable f, Monoid m) =>
(a -> m) -> NERAList' f a -> m
foldMap :: (a -> m) -> NERAList' f a -> m
$cfoldMap :: forall (f :: * -> *) m a.
(Foldable f, Monoid m) =>
(a -> m) -> NERAList' f a -> m
fold :: NERAList' f m -> m
$cfold :: forall (f :: * -> *) m.
(Foldable f, Monoid m) =>
NERAList' f m -> m
I.Foldable, Functor (NERAList' f)
Foldable (NERAList' f)
Functor (NERAList' f)
-> Foldable (NERAList' f)
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> NERAList' f a -> f (NERAList' f b))
-> (forall (f :: * -> *) a.
Applicative f =>
NERAList' f (f a) -> f (NERAList' f a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> NERAList' f a -> m (NERAList' f b))
-> (forall (m :: * -> *) a.
Monad m =>
NERAList' f (m a) -> m (NERAList' f a))
-> Traversable (NERAList' f)
(a -> f b) -> NERAList' f a -> f (NERAList' f b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (f :: * -> *). Traversable f => Functor (NERAList' f)
forall (f :: * -> *). Traversable f => Foldable (NERAList' f)
forall (f :: * -> *) (m :: * -> *) a.
(Traversable f, Monad m) =>
NERAList' f (m a) -> m (NERAList' f a)
forall (f :: * -> *) (f :: * -> *) a.
(Traversable f, Applicative f) =>
NERAList' f (f a) -> f (NERAList' f a)
forall (f :: * -> *) (m :: * -> *) a b.
(Traversable f, Monad m) =>
(a -> m b) -> NERAList' f a -> m (NERAList' f b)
forall (f :: * -> *) (f :: * -> *) a b.
(Traversable f, Applicative f) =>
(a -> f b) -> NERAList' f a -> f (NERAList' f b)
forall (m :: * -> *) a.
Monad m =>
NERAList' f (m a) -> m (NERAList' f a)
forall (f :: * -> *) a.
Applicative f =>
NERAList' f (f a) -> f (NERAList' f a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> NERAList' f a -> m (NERAList' f b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> NERAList' f a -> f (NERAList' f b)
sequence :: NERAList' f (m a) -> m (NERAList' f a)
$csequence :: forall (f :: * -> *) (m :: * -> *) a.
(Traversable f, Monad m) =>
NERAList' f (m a) -> m (NERAList' f a)
mapM :: (a -> m b) -> NERAList' f a -> m (NERAList' f b)
$cmapM :: forall (f :: * -> *) (m :: * -> *) a b.
(Traversable f, Monad m) =>
(a -> m b) -> NERAList' f a -> m (NERAList' f b)
sequenceA :: NERAList' f (f a) -> f (NERAList' f a)
$csequenceA :: forall (f :: * -> *) (f :: * -> *) a.
(Traversable f, Applicative f) =>
NERAList' f (f a) -> f (NERAList' f a)
traverse :: (a -> f b) -> NERAList' f a -> f (NERAList' f b)
$ctraverse :: forall (f :: * -> *) (f :: * -> *) a b.
(Traversable f, Applicative f) =>
(a -> f b) -> NERAList' f a -> f (NERAList' f b)
$cp2Traversable :: forall (f :: * -> *). Traversable f => Foldable (NERAList' f)
$cp1Traversable :: forall (f :: * -> *). Traversable f => Functor (NERAList' f)
I.Traversable)
instance (Ord a, I.Foldable f, Eq (f a)) => Ord (NERAList' f a) where
compare :: NERAList' f a -> NERAList' f a -> Ordering
compare NERAList' f a
xs NERAList' f a
ys = [a] -> [a] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ((a -> [a] -> [a]) -> [a] -> NERAList' f a -> [a]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
I.foldr (:) [] NERAList' f a
xs) ((a -> [a] -> [a]) -> [a] -> NERAList' f a -> [a]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
I.foldr (:) [] NERAList' f a
ys)
instance I.Foldable NERAList where
foldMap :: (a -> m) -> NERAList a -> m
foldMap a -> m
f (NE NERAList' Leaf a
xs) = (a -> m) -> NERAList' Leaf a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
I.foldMap a -> m
f NERAList' Leaf a
xs
#if MIN_VERSION_base(4,8,0)
length :: NERAList a -> Int
length = NERAList a -> Int
forall a. NERAList a -> Int
length
null :: NERAList a -> Bool
null = NERAList a -> Bool
forall a. NERAList a -> Bool
null
#endif
#ifdef MIN_VERSION_semigroupoids
instance I.Foldable1 NERAList where
foldMap1 :: (a -> m) -> NERAList a -> m
foldMap1 a -> m
f (NE NERAList' Leaf a
xs) = (a -> m) -> NERAList' Leaf a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
I.foldMap1 a -> m
f NERAList' Leaf a
xs
instance I.Foldable1 t => I.Foldable1 (NERAList' t) where
foldMap1 :: (a -> m) -> NERAList' t a -> m
foldMap1 a -> m
f (Last t a
t) = (a -> m) -> t a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
I.foldMap1 a -> m
f t a
t
foldMap1 a -> m
f (Cons0 NERAList' (Node t) a
r) = (a -> m) -> NERAList' (Node t) a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
I.foldMap1 a -> m
f NERAList' (Node t) a
r
foldMap1 a -> m
f (Cons1 t a
t NERAList' (Node t) a
r) = (a -> m) -> t a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
I.foldMap1 a -> m
f t a
t m -> m -> m
forall a. Semigroup a => a -> a -> a
<> (a -> m) -> NERAList' (Node t) a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
I.foldMap1 a -> m
f NERAList' (Node t) a
r
instance I.Traversable1 NERAList where
traverse1 :: (a -> f b) -> NERAList a -> f (NERAList b)
traverse1 a -> f b
f (NE NERAList' Leaf a
xs) = NERAList' Leaf b -> NERAList b
forall a. NERAList' Leaf a -> NERAList a
NE (NERAList' Leaf b -> NERAList b)
-> f (NERAList' Leaf b) -> f (NERAList b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> f b) -> NERAList' Leaf a -> f (NERAList' Leaf b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
I.traverse1 a -> f b
f NERAList' Leaf a
xs where
instance I.Traversable1 t => I.Traversable1 (NERAList' t) where
traverse1 :: (a -> f b) -> NERAList' t a -> f (NERAList' t b)
traverse1 a -> f b
f (Last t a
t) = t b -> NERAList' t b
forall (f :: * -> *) a. f a -> NERAList' f a
Last (t b -> NERAList' t b) -> f (t b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> f b) -> t a -> f (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
I.traverse1 a -> f b
f t a
t
traverse1 a -> f b
f (Cons0 NERAList' (Node t) a
r) = NERAList' (Node t) b -> NERAList' t b
forall (f :: * -> *) a. NERAList' (Node f) a -> NERAList' f a
Cons0 (NERAList' (Node t) b -> NERAList' t b)
-> f (NERAList' (Node t) b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> f b) -> NERAList' (Node t) a -> f (NERAList' (Node t) b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
I.traverse1 a -> f b
f NERAList' (Node t) a
r
traverse1 a -> f b
f (Cons1 t a
t NERAList' (Node t) a
r) = t b -> NERAList' (Node t) b -> NERAList' t b
forall (f :: * -> *) a.
f a -> NERAList' (Node f) a -> NERAList' f a
Cons1 (t b -> NERAList' (Node t) b -> NERAList' t b)
-> f (t b) -> f (NERAList' (Node t) b -> NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> f b) -> t a -> f (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
I.traverse1 a -> f b
f t a
t f (NERAList' (Node t) b -> NERAList' t b)
-> f (NERAList' (Node t) b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> (a -> f b) -> NERAList' (Node t) a -> f (NERAList' (Node t) b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
I.traverse1 a -> f b
f NERAList' (Node t) a
r
#endif
instance NFData a => NFData (NERAList a) where
rnf :: NERAList a -> ()
rnf (NE NERAList' Leaf a
r) = NERAList' Leaf a -> ()
forall a. NFData a => a -> ()
rnf NERAList' Leaf a
r
instance NFData (t a) => NFData (NERAList' t a) where
rnf :: NERAList' t a -> ()
rnf (Last t a
t) = t a -> ()
forall a. NFData a => a -> ()
rnf t a
t
rnf (Cons0 NERAList' (Node t) a
r) = NERAList' (Node t) a -> ()
forall a. NFData a => a -> ()
rnf NERAList' (Node t) a
r
rnf (Cons1 t a
t NERAList' (Node t) a
r) = t a -> ()
forall a. NFData a => a -> ()
rnf t a
t () -> () -> ()
`seq` NERAList' (Node t) a -> ()
forall a. NFData a => a -> ()
rnf NERAList' (Node t) a
r
instance Hashable a => Hashable (NERAList a) where
hashWithSalt :: Int -> NERAList a -> Int
hashWithSalt Int
salt (NE NERAList' Leaf a
r) = Int -> NERAList' Leaf a -> Int
forall a. Hashable a => Int -> a -> Int
hashWithSalt Int
salt NERAList' Leaf a
r
instance Hashable (t a) => Hashable (NERAList' t a) where
hashWithSalt :: Int -> NERAList' t a -> Int
hashWithSalt Int
salt (Last t a
t) = Int
salt Int -> t a -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` t a
t
hashWithSalt Int
salt (Cons0 NERAList' (Node t) a
r) = Int
salt Int -> NERAList' (Node t) a -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` NERAList' (Node t) a
r
hashWithSalt Int
salt (Cons1 t a
t NERAList' (Node t) a
r) = Int
salt Int -> t a -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` t a
t Int -> NERAList' (Node t) a -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` NERAList' (Node t) a
r
instance Semigroup (NERAList a) where
NE NERAList' Leaf a
xs <> :: NERAList a -> NERAList a -> NERAList a
<> NERAList a
ys = (a -> NERAList a -> NERAList a)
-> NERAList a -> NERAList' Leaf a -> NERAList a
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
I.foldr a -> NERAList a -> NERAList a
forall a. a -> NERAList a -> NERAList a
cons NERAList a
ys NERAList' Leaf a
xs
#ifdef MIN_VERSION_semigroupoids
#endif
instance Show a => Show (NERAList a) where
showsPrec :: Int -> NERAList a -> ShowS
showsPrec Int
d NERAList a
xs = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String -> ShowS
showString String
"fromNonEmpty " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> NonEmpty a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
11 (NERAList a -> NonEmpty a
forall a. NERAList a -> NonEmpty a
toNonEmpty NERAList a
xs)
explicitShow :: Show a => NERAList a -> String
explicitShow :: NERAList a -> String
explicitShow NERAList a
xs = Int -> NERAList a -> ShowS
forall a. Show a => Int -> NERAList a -> ShowS
explicitShowsPrec Int
0 NERAList a
xs String
""
explicitShowsPrec :: Show a => Int -> NERAList a -> ShowS
explicitShowsPrec :: Int -> NERAList a -> ShowS
explicitShowsPrec Int
d (NE NERAList' Leaf a
xs) = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String -> ShowS
showString String
"NE " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> NERAList' Leaf a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
11 NERAList' Leaf a
xs
singleton :: a -> NERAList a
singleton :: a -> NERAList a
singleton = NERAList' Leaf a -> NERAList a
forall a. NERAList' Leaf a -> NERAList a
NE (NERAList' Leaf a -> NERAList a)
-> (a -> NERAList' Leaf a) -> a -> NERAList a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> NERAList' Leaf a
forall a. a -> NERAList' Leaf a
singleton'
singleton' :: a -> NERAList' Leaf a
singleton' :: a -> NERAList' Leaf a
singleton' = Leaf a -> NERAList' Leaf a
forall (f :: * -> *) a. f a -> NERAList' f a
Last (Leaf a -> NERAList' Leaf a)
-> (a -> Leaf a) -> a -> NERAList' Leaf a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Leaf a
forall a. a -> Leaf a
Lf
cons :: a -> NERAList a -> NERAList a
cons :: a -> NERAList a -> NERAList a
cons a
x (NE NERAList' Leaf a
xs) = NERAList' Leaf a -> NERAList a
forall a. NERAList' Leaf a -> NERAList a
NE (Leaf a -> NERAList' Leaf a -> NERAList' Leaf a
forall (f :: * -> *) a. f a -> NERAList' f a -> NERAList' f a
consTree (a -> Leaf a
forall a. a -> Leaf a
Lf a
x) NERAList' Leaf a
xs)
consTree :: f a -> NERAList' f a -> NERAList' f a
consTree :: f a -> NERAList' f a -> NERAList' f a
consTree f a
x (Last f a
t) = NERAList' (Node f) a -> NERAList' f a
forall (f :: * -> *) a. NERAList' (Node f) a -> NERAList' f a
Cons0 (Node f a -> NERAList' (Node f) a
forall (f :: * -> *) a. f a -> NERAList' f a
Last (f a -> f a -> Node f a
forall (f :: * -> *) a. f a -> f a -> Node f a
Nd f a
x f a
t))
consTree f a
x (Cons0 NERAList' (Node f) a
r) = f a -> NERAList' (Node f) a -> NERAList' f a
forall (f :: * -> *) a.
f a -> NERAList' (Node f) a -> NERAList' f a
Cons1 f a
x NERAList' (Node f) a
r
consTree f a
x (Cons1 f a
t NERAList' (Node f) a
r) = NERAList' (Node f) a -> NERAList' f a
forall (f :: * -> *) a. NERAList' (Node f) a -> NERAList' f a
Cons0 (Node f a -> NERAList' (Node f) a -> NERAList' (Node f) a
forall (f :: * -> *) a. f a -> NERAList' f a -> NERAList' f a
consTree (f a -> f a -> Node f a
forall (f :: * -> *) a. f a -> f a -> Node f a
Nd f a
x f a
t) NERAList' (Node f) a
r)
toNonEmpty :: NERAList a -> NonEmpty a
toNonEmpty :: NERAList a -> NonEmpty a
toNonEmpty = (a -> NonEmpty a -> NonEmpty a)
-> (a -> NonEmpty a) -> NERAList a -> NonEmpty a
forall a b. (a -> b -> b) -> (a -> b) -> NERAList a -> b
foldr1Map a -> NonEmpty a -> NonEmpty a
forall a. a -> NonEmpty a -> NonEmpty a
NEList.cons (a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:|[])
toList :: NERAList a -> [a]
toList :: NERAList a -> [a]
toList = (a -> [a] -> [a]) -> [a] -> NERAList a -> [a]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
I.foldr (:) []
fromNonEmpty :: NonEmpty a -> NERAList a
fromNonEmpty :: NonEmpty a -> NERAList a
fromNonEmpty (a
z :| [a]
zs) = a -> [a] -> NERAList a
forall t. t -> [t] -> NERAList t
go a
z [a]
zs where
go :: t -> [t] -> NERAList t
go t
x [] = t -> NERAList t
forall a. a -> NERAList a
singleton t
x
go t
x (t
y:[t]
ys) = t -> NERAList t -> NERAList t
forall a. a -> NERAList a -> NERAList a
cons t
x (t -> [t] -> NERAList t
go t
y [t]
ys)
(!) :: NERAList a -> Int -> a
(!) (NE NERAList' Leaf a
xs) Int
i = a -> Maybe a -> a
forall a. a -> Maybe a -> a
fromMaybe (ArrayException -> a
forall a e. Exception e => e -> a
throw (ArrayException -> a) -> ArrayException -> a
forall a b. (a -> b) -> a -> b
$ String -> ArrayException
IndexOutOfBounds String
"NERAList") (NERAList' Leaf a -> Int -> Maybe a
forall (f :: * -> *) a. IsTree f => NERAList' f a -> Int -> Maybe a
safeIndex' NERAList' Leaf a
xs Int
i)
(!?) :: NERAList a -> Int -> Maybe a
NE NERAList' Leaf a
xs !? :: NERAList a -> Int -> Maybe a
!? Int
i = NERAList' Leaf a -> Int -> Maybe a
forall (f :: * -> *) a. IsTree f => NERAList' f a -> Int -> Maybe a
safeIndex' NERAList' Leaf a
xs Int
i
safeIndex' :: Tr.IsTree f => NERAList' f a -> Int -> Maybe a
safeIndex' :: NERAList' f a -> Int -> Maybe a
safeIndex' = Int -> NERAList' f a -> Int -> Maybe a
forall (g :: * -> *) a.
IsTree g =>
Int -> NERAList' g a -> Int -> Maybe a
go Int
1 where
go :: Tr.IsTree g => Int -> NERAList' g a -> Int -> Maybe a
go :: Int -> NERAList' g a -> Int -> Maybe a
go !Int
s (Last g a
t) Int
i = Int -> g a -> Int -> Maybe a
forall (t :: * -> *) a. IsTree t => Int -> t a -> Int -> Maybe a
Tr.safeIndex Int
s g a
t Int
i
go Int
s (Cons0 NERAList' (Node g) a
r) Int
i = Int -> NERAList' (Node g) a -> Int -> Maybe a
forall (g :: * -> *) a.
IsTree g =>
Int -> NERAList' g a -> Int -> Maybe a
go (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2) NERAList' (Node g) a
r Int
i
go Int
s (Cons1 g a
t NERAList' (Node g) a
r) Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
s = Int -> g a -> Int -> Maybe a
forall (t :: * -> *) a. IsTree t => Int -> t a -> Int -> Maybe a
Tr.safeIndex Int
s g a
t Int
i
| Bool
otherwise = Int -> NERAList' (Node g) a -> Int -> Maybe a
forall (g :: * -> *) a.
IsTree g =>
Int -> NERAList' g a -> Int -> Maybe a
go (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2) NERAList' (Node g) a
r (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
s)
head :: NERAList a -> a
head :: NERAList a -> a
head (NE NERAList' Leaf a
x) = NERAList' Leaf a -> a
forall (f :: * -> *) a. IsTree f => NERAList' f a -> a
head' NERAList' Leaf a
x
last :: NERAList a -> a
last :: NERAList a -> a
last (NE NERAList' Leaf a
x) = NERAList' Leaf a -> a
forall (f :: * -> *) a. IsTree f => NERAList' f a -> a
last' NERAList' Leaf a
x
head' :: Tr.IsTree f => NERAList' f a -> a
head' :: NERAList' f a -> a
head' (Last f a
t) = f a -> a
forall (t :: * -> *) a. IsTree t => t a -> a
Tr.head f a
t
head' (Cons0 NERAList' (Node f) a
r) = NERAList' (Node f) a -> a
forall (f :: * -> *) a. IsTree f => NERAList' f a -> a
head' NERAList' (Node f) a
r
head' (Cons1 f a
t NERAList' (Node f) a
_) = f a -> a
forall (t :: * -> *) a. IsTree t => t a -> a
Tr.head f a
t
last' :: Tr.IsTree f => NERAList' f a -> a
last' :: NERAList' f a -> a
last' (Last f a
t) = f a -> a
forall (t :: * -> *) a. IsTree t => t a -> a
Tr.last f a
t
last' (Cons0 NERAList' (Node f) a
r) = NERAList' (Node f) a -> a
forall (f :: * -> *) a. IsTree f => NERAList' f a -> a
last' NERAList' (Node f) a
r
last' (Cons1 f a
_ NERAList' (Node f) a
r) = NERAList' (Node f) a -> a
forall (f :: * -> *) a. IsTree f => NERAList' f a -> a
last' NERAList' (Node f) a
r
length :: NERAList a -> Int
length :: NERAList a -> Int
length (NE NERAList' Leaf a
xs) = Int -> Int -> NERAList' Leaf a -> Int
forall (n :: * -> *) a. Int -> Int -> NERAList' n a -> Int
go Int
0 Int
1 NERAList' Leaf a
xs where
go :: Int -> Int -> NERAList' n a -> Int
go :: Int -> Int -> NERAList' n a -> Int
go !Int
acc Int
s (Last n a
_) = Int
acc Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s
go Int
acc Int
s (Cons0 NERAList' (Node n) a
r) = Int -> Int -> NERAList' (Node n) a -> Int
forall (n :: * -> *) a. Int -> Int -> NERAList' n a -> Int
go Int
acc (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) NERAList' (Node n) a
r
go Int
acc Int
s (Cons1 n a
_ NERAList' (Node n) a
r) = Int -> Int -> NERAList' (Node n) a -> Int
forall (n :: * -> *) a. Int -> Int -> NERAList' n a -> Int
go (Int
acc Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) NERAList' (Node n) a
r
null :: NERAList a -> Bool
null :: NERAList a -> Bool
null NERAList a
_ = Bool
False
foldMap1 :: forall a s. Semigroup s => (a -> s) -> NERAList a -> s
foldMap1 :: (a -> s) -> NERAList a -> s
foldMap1 a -> s
f (NE NERAList' Leaf a
xs) = (Leaf a -> s) -> NERAList' Leaf a -> s
forall (t :: * -> *). (t a -> s) -> NERAList' t a -> s
go (\(Lf a
x) -> a -> s
f a
x) NERAList' Leaf a
xs where
go :: (t a -> s) -> NERAList' t a -> s
go :: (t a -> s) -> NERAList' t a -> s
go t a -> s
g (Last t a
t) = t a -> s
g t a
t
go t a -> s
g (Cons0 NERAList' (Node t) a
r) = (Node t a -> s) -> NERAList' (Node t) a -> s
forall (t :: * -> *). (t a -> s) -> NERAList' t a -> s
go (\(Nd t a
x t a
y) -> t a -> s
g t a
x s -> s -> s
forall a. Semigroup a => a -> a -> a
<> t a -> s
g t a
y) NERAList' (Node t) a
r
go t a -> s
g (Cons1 t a
t NERAList' (Node t) a
r) = t a -> s
g t a
t s -> s -> s
forall a. Semigroup a => a -> a -> a
<> (Node t a -> s) -> NERAList' (Node t) a -> s
forall (t :: * -> *). (t a -> s) -> NERAList' t a -> s
go (\(Nd t a
x t a
y) -> t a -> s
g t a
x s -> s -> s
forall a. Semigroup a => a -> a -> a
<> t a -> s
g t a
y) NERAList' (Node t) a
r
foldr1Map :: (a -> b -> b) -> (a -> b) -> NERAList a -> b
foldr1Map :: (a -> b -> b) -> (a -> b) -> NERAList a -> b
foldr1Map a -> b -> b
f a -> b
z (NE NERAList' Leaf a
xs) = (a -> b -> b) -> (a -> b) -> NERAList' Leaf a -> b
forall (f :: * -> *) a b.
IsTree f =>
(a -> b -> b) -> (a -> b) -> NERAList' f a -> b
foldr1Map' a -> b -> b
f a -> b
z NERAList' Leaf a
xs
foldr1Map' :: Tr.IsTree f => (a -> b -> b) -> (a -> b) -> NERAList' f a -> b
foldr1Map' :: (a -> b -> b) -> (a -> b) -> NERAList' f a -> b
foldr1Map' a -> b -> b
f a -> b
z (Last f a
t) = (a -> b -> b) -> (a -> b) -> f a -> b
forall (t :: * -> *) a b.
IsTree t =>
(a -> b -> b) -> (a -> b) -> t a -> b
Tr.foldr1Map a -> b -> b
f a -> b
z f a
t
foldr1Map' a -> b -> b
f a -> b
z (Cons0 NERAList' (Node f) a
r) = (a -> b -> b) -> (a -> b) -> NERAList' (Node f) a -> b
forall (f :: * -> *) a b.
IsTree f =>
(a -> b -> b) -> (a -> b) -> NERAList' f a -> b
foldr1Map' a -> b -> b
f a -> b
z NERAList' (Node f) a
r
foldr1Map' a -> b -> b
f a -> b
z (Cons1 f a
t NERAList' (Node f) a
r) = (a -> b -> b) -> b -> f a -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
I.foldr a -> b -> b
f ((a -> b -> b) -> (a -> b) -> NERAList' (Node f) a -> b
forall (f :: * -> *) a b.
IsTree f =>
(a -> b -> b) -> (a -> b) -> NERAList' f a -> b
foldr1Map' a -> b -> b
f a -> b
z NERAList' (Node f) a
r) f a
t
ifoldMap :: Monoid m => (Int -> a -> m) -> NERAList a -> m
#if MIN_VERSION_base(4,11,0)
ifoldMap :: (Int -> a -> m) -> NERAList a -> m
ifoldMap = (Int -> a -> m) -> NERAList a -> m
forall a s. Semigroup s => (Int -> a -> s) -> NERAList a -> s
ifoldMap1
#else
ifoldMap f = unwrapMonoid . ifoldMap1 (\i a -> WrapMonoid (f i a))
#endif
ifoldMap1 :: forall a s. Semigroup s => (Int -> a -> s) -> NERAList a -> s
ifoldMap1 :: (Int -> a -> s) -> NERAList a -> s
ifoldMap1 Int -> a -> s
f (NE NERAList' Leaf a
xs) = Int -> Int -> NERAList' Leaf a -> s
forall (t :: * -> *). IsTree t => Int -> Int -> NERAList' t a -> s
go Int
0 Int
1 NERAList' Leaf a
xs where
go :: Tr.IsTree t => Tr.Offset -> Tr.Size -> NERAList' t a -> s
go :: Int -> Int -> NERAList' t a -> s
go Int
o Int
s (Last t a
t) = Int -> Int -> (Int -> a -> s) -> t a -> s
forall (t :: * -> *) s a.
(IsTree t, Semigroup s) =>
Int -> Int -> (Int -> a -> s) -> t a -> s
Tr.ifoldMap1 Int
o Int
s Int -> a -> s
f t a
t
go Int
o Int
s (Cons0 NERAList' (Node t) a
r) = Int -> Int -> NERAList' (Node t) a -> s
forall (t :: * -> *). IsTree t => Int -> Int -> NERAList' t a -> s
go Int
o (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) NERAList' (Node t) a
r
go Int
o Int
s (Cons1 t a
t NERAList' (Node t) a
r) = Int -> Int -> (Int -> a -> s) -> t a -> s
forall (t :: * -> *) s a.
(IsTree t, Semigroup s) =>
Int -> Int -> (Int -> a -> s) -> t a -> s
Tr.ifoldMap1 Int
o Int
s Int -> a -> s
f t a
t s -> s -> s
forall a. Semigroup a => a -> a -> a
<> Int -> Int -> NERAList' (Node t) a -> s
forall (t :: * -> *). IsTree t => Int -> Int -> NERAList' t a -> s
go (Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) NERAList' (Node t) a
r
ifoldr1Map :: forall a b. (Int -> a -> b -> b) -> (Int -> a -> b) -> NERAList a -> b
ifoldr1Map :: (Int -> a -> b -> b) -> (Int -> a -> b) -> NERAList a -> b
ifoldr1Map Int -> a -> b -> b
f Int -> a -> b
z (NE NERAList' Leaf a
xs) = Int -> Int -> NERAList' Leaf a -> b
forall (t :: * -> *). IsTree t => Int -> Int -> NERAList' t a -> b
go Int
0 Int
1 NERAList' Leaf a
xs where
go :: Tr.IsTree t => Tr.Offset -> Tr.Size -> NERAList' t a -> b
go :: Int -> Int -> NERAList' t a -> b
go Int
o Int
s (Last t a
t) = Int -> Int -> (Int -> a -> b -> b) -> (Int -> a -> b) -> t a -> b
forall (t :: * -> *) a b.
IsTree t =>
Int -> Int -> (Int -> a -> b -> b) -> (Int -> a -> b) -> t a -> b
Tr.ifoldr1Map Int
o Int
s Int -> a -> b -> b
f Int -> a -> b
z t a
t
go Int
o Int
s (Cons0 NERAList' (Node t) a
r) = Int -> Int -> NERAList' (Node t) a -> b
forall (t :: * -> *). IsTree t => Int -> Int -> NERAList' t a -> b
go Int
o (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2) NERAList' (Node t) a
r
go Int
o Int
s (Cons1 t a
t NERAList' (Node t) a
r) = Int -> Int -> (Int -> a -> b -> b) -> b -> t a -> b
forall (t :: * -> *) a b.
IsTree t =>
Int -> Int -> (Int -> a -> b -> b) -> b -> t a -> b
Tr.ifoldr Int
o Int
s Int -> a -> b -> b
f (Int -> Int -> NERAList' (Node t) a -> b
forall (t :: * -> *). IsTree t => Int -> Int -> NERAList' t a -> b
go (Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) NERAList' (Node t) a
r) t a
t
map :: (a -> b) -> NERAList a -> NERAList b
map :: (a -> b) -> NERAList a -> NERAList b
map = (a -> b) -> NERAList a -> NERAList b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
imap :: (Int -> a -> b) -> NERAList a -> NERAList b
imap :: (Int -> a -> b) -> NERAList a -> NERAList b
imap Int -> a -> b
f NERAList a
xs = I (NERAList b) -> NERAList b
forall a. I a -> a
unI ((Int -> a -> I b) -> NERAList a -> I (NERAList b)
forall (f :: * -> *) a b.
Applicative f =>
(Int -> a -> f b) -> NERAList a -> f (NERAList b)
itraverse (\Int
i a
x -> b -> I b
forall a. a -> I a
I (Int -> a -> b
f Int
i a
x)) NERAList a
xs)
itraverse :: forall f a b. Applicative f => (Int -> a -> f b) -> NERAList a -> f (NERAList b)
itraverse :: (Int -> a -> f b) -> NERAList a -> f (NERAList b)
itraverse Int -> a -> f b
f (NE NERAList' Leaf a
xs) = NERAList' Leaf b -> NERAList b
forall a. NERAList' Leaf a -> NERAList a
NE (NERAList' Leaf b -> NERAList b)
-> f (NERAList' Leaf b) -> f (NERAList b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> NERAList' Leaf a -> f (NERAList' Leaf b)
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> f (NERAList' t b)
go Int
0 Int
1 NERAList' Leaf a
xs where
go :: Tr.IsTree t => Tr.Offset -> Tr.Size -> NERAList' t a -> f (NERAList' t b)
go :: Int -> Int -> NERAList' t a -> f (NERAList' t b)
go !Int
o !Int
s (Last t a
t) = t b -> NERAList' t b
forall (f :: * -> *) a. f a -> NERAList' f a
Last (t b -> NERAList' t b) -> f (t b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(IsTree t, Applicative f) =>
Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
Tr.itraverse Int
o Int
s Int -> a -> f b
f t a
t
go Int
o Int
s (Cons0 NERAList' (Node t) a
r) = NERAList' (Node t) b -> NERAList' t b
forall (f :: * -> *) a. NERAList' (Node f) a -> NERAList' f a
Cons0 (NERAList' (Node t) b -> NERAList' t b)
-> f (NERAList' (Node t) b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> NERAList' (Node t) a -> f (NERAList' (Node t) b)
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> f (NERAList' t b)
go Int
o (Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
s) NERAList' (Node t) a
r
go Int
o Int
s (Cons1 t a
t NERAList' (Node t) a
r) = t b -> NERAList' (Node t) b -> NERAList' t b
forall (f :: * -> *) a.
f a -> NERAList' (Node f) a -> NERAList' f a
Cons1
(t b -> NERAList' (Node t) b -> NERAList' t b)
-> f (t b) -> f (NERAList' (Node t) b -> NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(IsTree t, Applicative f) =>
Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
Tr.itraverse Int
o Int
s Int -> a -> f b
f t a
t
f (NERAList' (Node t) b -> NERAList' t b)
-> f (NERAList' (Node t) b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int -> Int -> NERAList' (Node t) a -> f (NERAList' (Node t) b)
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> f (NERAList' t b)
go (Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) (Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
s) NERAList' (Node t) a
r
#ifdef MIN_VERSION_semigroupoids
itraverse1 :: forall f a b. Apply f => (Int -> a -> f b) -> NERAList a -> f (NERAList b)
itraverse1 :: (Int -> a -> f b) -> NERAList a -> f (NERAList b)
itraverse1 Int -> a -> f b
f (NE NERAList' Leaf a
xs) = NERAList' Leaf b -> NERAList b
forall a. NERAList' Leaf a -> NERAList a
NE (NERAList' Leaf b -> NERAList b)
-> f (NERAList' Leaf b) -> f (NERAList b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> NERAList' Leaf a -> f (NERAList' Leaf b)
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> f (NERAList' t b)
go Int
0 Int
1 NERAList' Leaf a
xs where
go :: Tr.IsTree t => Tr.Offset -> Tr.Size -> NERAList' t a -> f (NERAList' t b)
go :: Int -> Int -> NERAList' t a -> f (NERAList' t b)
go !Int
o !Int
s (Last t a
t) = t b -> NERAList' t b
forall (f :: * -> *) a. f a -> NERAList' f a
Last (t b -> NERAList' t b) -> f (t b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(IsTree t, Apply f) =>
Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
Tr.itraverse1 Int
o Int
s Int -> a -> f b
f t a
t
go Int
o Int
s (Cons0 NERAList' (Node t) a
r) = NERAList' (Node t) b -> NERAList' t b
forall (f :: * -> *) a. NERAList' (Node f) a -> NERAList' f a
Cons0 (NERAList' (Node t) b -> NERAList' t b)
-> f (NERAList' (Node t) b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> NERAList' (Node t) a -> f (NERAList' (Node t) b)
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> f (NERAList' t b)
go Int
o (Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
s) NERAList' (Node t) a
r
go Int
o Int
s (Cons1 t a
t NERAList' (Node t) a
r) = t b -> NERAList' (Node t) b -> NERAList' t b
forall (f :: * -> *) a.
f a -> NERAList' (Node f) a -> NERAList' f a
Cons1
(t b -> NERAList' (Node t) b -> NERAList' t b)
-> f (t b) -> f (NERAList' (Node t) b -> NERAList' t b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(IsTree t, Apply f) =>
Int -> Int -> (Int -> a -> f b) -> t a -> f (t b)
Tr.itraverse1 Int
o Int
s Int -> a -> f b
f t a
t
f (NERAList' (Node t) b -> NERAList' t b)
-> f (NERAList' (Node t) b) -> f (NERAList' t b)
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> Int -> Int -> NERAList' (Node t) a -> f (NERAList' (Node t) b)
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> f (NERAList' t b)
go (Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) (Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
s) NERAList' (Node t) a
r
#endif
adjust :: forall a. Int -> (a -> a) -> NERAList a -> NERAList a
adjust :: Int -> (a -> a) -> NERAList a -> NERAList a
adjust Int
i a -> a
_ NERAList a
xs | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = NERAList a
xs
adjust Int
i a -> a
f (NE NERAList' Leaf a
xs) = NERAList' Leaf a -> NERAList a
forall a. NERAList' Leaf a -> NERAList a
NE (Int -> Int -> NERAList' Leaf a -> NERAList' Leaf a
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> NERAList' t a
go Int
0 Int
1 NERAList' Leaf a
xs) where
go :: Tr.IsTree t => Tr.Offset -> Tr.Size -> NERAList' t a -> NERAList' t a
go :: Int -> Int -> NERAList' t a -> NERAList' t a
go !Int
o !Int
s (Last t a
t) = t a -> NERAList' t a
forall (f :: * -> *) a. f a -> NERAList' f a
Last (Int -> Int -> (a -> a) -> t a -> t a
forall (t :: * -> *) a.
IsTree t =>
Int -> Int -> (a -> a) -> t a -> t a
Tr.adjust Int
s (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
o) a -> a
f t a
t)
go Int
o Int
s (Cons0 NERAList' (Node t) a
r) = NERAList' (Node t) a -> NERAList' t a
forall (f :: * -> *) a. NERAList' (Node f) a -> NERAList' f a
Cons0 (Int -> Int -> NERAList' (Node t) a -> NERAList' (Node t) a
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> NERAList' t a
go Int
o (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) NERAList' (Node t) a
r)
go Int
o Int
s (Cons1 t a
t NERAList' (Node t) a
r)
| Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
o Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
s = t a -> NERAList' (Node t) a -> NERAList' t a
forall (f :: * -> *) a.
f a -> NERAList' (Node f) a -> NERAList' f a
Cons1 (Int -> Int -> (a -> a) -> t a -> t a
forall (t :: * -> *) a.
IsTree t =>
Int -> Int -> (a -> a) -> t a -> t a
Tr.adjust Int
s (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
o) a -> a
f t a
t) NERAList' (Node t) a
r
| Bool
otherwise = t a -> NERAList' (Node t) a -> NERAList' t a
forall (f :: * -> *) a.
f a -> NERAList' (Node f) a -> NERAList' f a
Cons1 t a
t (Int -> Int -> NERAList' (Node t) a -> NERAList' (Node t) a
forall (t :: * -> *).
IsTree t =>
Int -> Int -> NERAList' t a -> NERAList' t a
go (Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
s) NERAList' (Node t) a
r)
instance QC.Arbitrary1 NERAList where
liftArbitrary :: Gen a -> Gen (NERAList a)
liftArbitrary Gen a
arb = do
a
x <- Gen a
arb
[a]
xs <- Gen a -> Gen [a]
forall (f :: * -> *) a. Arbitrary1 f => Gen a -> Gen (f a)
QC.liftArbitrary Gen a
arb
NERAList a -> Gen (NERAList a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (NonEmpty a -> NERAList a
forall a. NonEmpty a -> NERAList a
fromNonEmpty (a
x a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| [a]
xs))
liftShrink :: (a -> [a]) -> NERAList a -> [NERAList a]
liftShrink a -> [a]
shr
= ((a, [a]) -> NERAList a) -> [(a, [a])] -> [NERAList a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\(a
x,[a]
xs) -> NonEmpty a -> NERAList a
forall a. NonEmpty a -> NERAList a
fromNonEmpty (a
xa -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:|[a]
xs))
([(a, [a])] -> [NERAList a])
-> (NERAList a -> [(a, [a])]) -> NERAList a -> [NERAList a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> [a]) -> ([a] -> [[a]]) -> (a, [a]) -> [(a, [a])]
forall (f :: * -> * -> *) a b.
Arbitrary2 f =>
(a -> [a]) -> (b -> [b]) -> f a b -> [f a b]
QC.liftShrink2 a -> [a]
shr ((a -> [a]) -> [a] -> [[a]]
forall (f :: * -> *) a. Arbitrary1 f => (a -> [a]) -> f a -> [f a]
QC.liftShrink a -> [a]
shr)
((a, [a]) -> [(a, [a])])
-> (NERAList a -> (a, [a])) -> NERAList a -> [(a, [a])]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (\(a
x:|[a]
xs) -> (a
x,[a]
xs)) (NonEmpty a -> (a, [a]))
-> (NERAList a -> NonEmpty a) -> NERAList a -> (a, [a])
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NERAList a -> NonEmpty a
forall a. NERAList a -> NonEmpty a
toNonEmpty
instance QC.Arbitrary a => QC.Arbitrary (NERAList a) where
arbitrary :: Gen (NERAList a)
arbitrary = Gen (NERAList a)
forall (f :: * -> *) a. (Arbitrary1 f, Arbitrary a) => Gen (f a)
QC.arbitrary1
shrink :: NERAList a -> [NERAList a]
shrink = NERAList a -> [NERAList a]
forall (f :: * -> *) a. (Arbitrary1 f, Arbitrary a) => f a -> [f a]
QC.shrink1
instance QC.CoArbitrary a => QC.CoArbitrary (NERAList a) where
coarbitrary :: NERAList a -> Gen b -> Gen b
coarbitrary NERAList a
xs = (a, [a]) -> Gen b -> Gen b
forall a b. CoArbitrary a => a -> Gen b -> Gen b
QC.coarbitrary (a
y, [a]
ys) where
(a
y:|[a]
ys) = NERAList a -> NonEmpty a
forall a. NERAList a -> NonEmpty a
toNonEmpty NERAList a
xs
instance QC.Function a => QC.Function (NERAList a) where
function :: (NERAList a -> b) -> NERAList a :-> b
function = (NERAList a -> (a, [a]))
-> ((a, [a]) -> NERAList a)
-> (NERAList a -> b)
-> NERAList a :-> b
forall b a c.
Function b =>
(a -> b) -> (b -> a) -> (a -> c) -> a :-> c
QC.functionMap (NonEmpty a -> (a, [a])
forall a. NonEmpty a -> (a, [a])
fwd (NonEmpty a -> (a, [a]))
-> (NERAList a -> NonEmpty a) -> NERAList a -> (a, [a])
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NERAList a -> NonEmpty a
forall a. NERAList a -> NonEmpty a
toNonEmpty) (NonEmpty a -> NERAList a
forall a. NonEmpty a -> NERAList a
fromNonEmpty (NonEmpty a -> NERAList a)
-> ((a, [a]) -> NonEmpty a) -> (a, [a]) -> NERAList a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, [a]) -> NonEmpty a
forall a. (a, [a]) -> NonEmpty a
bwd) where
fwd :: NonEmpty a -> (a, [a])
fwd (a
x :| [a]
xs) = (a
x, [a]
xs)
bwd :: (a, [a]) -> NonEmpty a
bwd (a
x, [a]
xs) = a
x a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| [a]
xs
newtype I a = I a
unI :: I a -> a
unI :: I a -> a
unI (I a
a) = a
a
instance Functor I where
fmap :: (a -> b) -> I a -> I b
fmap a -> b
f (I a
x) = b -> I b
forall a. a -> I a
I (a -> b
f a
x)
instance Applicative I where
pure :: a -> I a
pure = a -> I a
forall a. a -> I a
I
I a -> b
f <*> :: I (a -> b) -> I a -> I b
<*> I a
x = b -> I b
forall a. a -> I a
I (a -> b
f a
x)
I a
_ *> :: I a -> I b -> I b
*> I b
x = I b
x
I a
x <* :: I a -> I b -> I a
<* I b
_ = I a
x
#if MIN_VERSION_base(4,10,0)
liftA2 :: (a -> b -> c) -> I a -> I b -> I c
liftA2 a -> b -> c
f (I a
x) (I b
y) = c -> I c
forall a. a -> I a
I (a -> b -> c
f a
x b
y)
#endif