Safe Haskell | None |
---|---|
Language | Haskell2010 |
This module exports various dictionaries that help the type-checker when dealing with row-types.
For the various axioms, type variables are consistently in the following order:
- Any types that do not belong later.
- Labels
-
Row-types
- If applicable, the type in the row-type at the given label goes after each row-type
- Constraints
Synopsis
- uniqueMap :: forall f r. Dict ( AllUniqueLabels ( Map f r) ≈ AllUniqueLabels r)
- uniqueAp :: forall fs r. Dict ( AllUniqueLabels ( Ap fs r) ≈ AllUniqueLabels r)
- uniqueApSingle :: forall x r. Dict ( AllUniqueLabels ( ApSingle r x) ≈ AllUniqueLabels r)
- uniqueZip :: forall r1 r2. Dict ( AllUniqueLabels ( Zip r1 r2) ≈ ( AllUniqueLabels r1, AllUniqueLabels r2))
- extendHas :: forall l t r. Dict (( Extend l t r .! l) ≈ t)
- mapHas :: forall f l t r. ((r .! l) ≈ t) :- (( Map f r .! l) ≈ f t, ( Map f r .- l) ≈ Map f (r .- l))
- apHas :: forall l f ϕ t ρ. ((ϕ .! l) ≈ f, (ρ .! l) ≈ t) :- (( Ap ϕ ρ .! l) ≈ f t, ( Ap ϕ ρ .- l) ≈ Ap (ϕ .- l) (ρ .- l))
- apSingleHas :: forall x l f r. ((r .! l) ≈ f) :- (( ApSingle r x .! l) ≈ f x, ( ApSingle r x .- l) ≈ ApSingle (r .- l) x)
- mapExtendSwap :: forall f ℓ τ r. Dict ( Extend ℓ (f τ) ( Map f r) ≈ Map f ( Extend ℓ τ r))
- apExtendSwap :: forall ℓ f fs τ r. Dict ( Extend ℓ (f τ) ( Ap fs r) ≈ Ap ( Extend ℓ f fs) ( Extend ℓ τ r))
- apSingleExtendSwap :: forall τ ℓ f r. Dict ( Extend ℓ (f τ) ( ApSingle r τ) ≈ ApSingle ( Extend ℓ f r) τ)
- zipExtendSwap :: forall ℓ τ1 r1 τ2 r2. Dict ( Extend ℓ (τ1, τ2) ( Zip r1 r2) ≈ Zip ( Extend ℓ τ1 r1) ( Extend ℓ τ2 r2))
- mapMinJoin :: forall f r r'. Dict (( Map f r .\/ Map f r') ≈ Map f (r .\/ r'))
- apSingleMinJoin :: forall r r' x. Dict (( ApSingle r x .\/ ApSingle r' x) ≈ ApSingle (r .\/ r') x)
- type FreeForall r = Forall r Unconstrained1
- type FreeBiForall r1 r2 = BiForall r1 r2 Unconstrained2
- freeForall :: forall r c. Forall r c :- Forall r Unconstrained1
- mapForall :: forall f ρ c. Forall ρ c :- Forall ( Map f ρ) ( IsA c f)
- apSingleForall :: forall a fs c. Forall fs c :- Forall ( ApSingle fs a) ( ActsOn c a)
- subsetJoin :: forall r1 r2 s. Dict (( Subset r1 s, Subset r2 s) ≈ Subset (r1 .+ r2) s)
- subsetJoin' :: forall r1 r2 s. Dict (( Subset r1 s, Subset r2 s) ≈ Subset (r1 .// r2) s)
- subsetRestrict :: forall r s l. Subset r s :- Subset (r .- l) s
- subsetTrans :: forall r1 r2 r3. ( Subset r1 r2, Subset r2 r3) :- Subset r1 r3
- mapDifference :: forall f r r'. Dict (( Map f r .\\ Map f r') ≈ Map f (r .\\ r'))
- apSingleDifference :: forall r r' x. Dict (( ApSingle r x .\\ ApSingle r' x) ≈ ApSingle (r .\\ r') x)
- class IsA c f a where
- data As c f a where
- class ActsOn c t a where
- data As' c t a where
- data Dict a where
- newtype a :- b = Sub (a => Dict b)
- class HasDict c e | e -> c where
- (\\) :: HasDict c e => (c => r) -> e -> r
- withDict :: HasDict c e => e -> (c => r) -> r
- class Unconstrained
- class Unconstrained1 a
- class Unconstrained2 a b
Axioms
uniqueMap :: forall f r. Dict ( AllUniqueLabels ( Map f r) ≈ AllUniqueLabels r) Source #
Map preserves uniqueness of labels.
uniqueAp :: forall fs r. Dict ( AllUniqueLabels ( Ap fs r) ≈ AllUniqueLabels r) Source #
Ap preserves uniqueness of labels.
uniqueApSingle :: forall x r. Dict ( AllUniqueLabels ( ApSingle r x) ≈ AllUniqueLabels r) Source #
ApSingle preserves uniqueness of labels.
uniqueZip :: forall r1 r2. Dict ( AllUniqueLabels ( Zip r1 r2) ≈ ( AllUniqueLabels r1, AllUniqueLabels r2)) Source #
Zip preserves uniqueness of labels.
extendHas :: forall l t r. Dict (( Extend l t r .! l) ≈ t) Source #
If we know that
r
has been extended with
l .== t
, then we know that this
extension at the label
l
must be
t
.
mapHas :: forall f l t r. ((r .! l) ≈ t) :- (( Map f r .! l) ≈ f t, ( Map f r .- l) ≈ Map f (r .- l)) Source #
This allows us to derive
Map f r .! l ≈ f t
from
r .! l ≈ t
apHas :: forall l f ϕ t ρ. ((ϕ .! l) ≈ f, (ρ .! l) ≈ t) :- (( Ap ϕ ρ .! l) ≈ f t, ( Ap ϕ ρ .- l) ≈ Ap (ϕ .- l) (ρ .- l)) Source #
This allows us to derive
Ap ϕ ρ .! l ≈ f t
from
ϕ .! l ≈ f
and
ρ .! l ≈ t
apSingleHas :: forall x l f r. ((r .! l) ≈ f) :- (( ApSingle r x .! l) ≈ f x, ( ApSingle r x .- l) ≈ ApSingle (r .- l) x) Source #
This allows us to derive
ApSingle r x .! l ≈ f x
from
r .! l ≈ f
mapExtendSwap :: forall f ℓ τ r. Dict ( Extend ℓ (f τ) ( Map f r) ≈ Map f ( Extend ℓ τ r)) Source #
Proof that the
Map
type family preserves labels and their ordering.
apExtendSwap :: forall ℓ f fs τ r. Dict ( Extend ℓ (f τ) ( Ap fs r) ≈ Ap ( Extend ℓ f fs) ( Extend ℓ τ r)) Source #
Proof that the
Ap
type family preserves labels and their ordering.
apSingleExtendSwap :: forall τ ℓ f r. Dict ( Extend ℓ (f τ) ( ApSingle r τ) ≈ ApSingle ( Extend ℓ f r) τ) Source #
Proof that the
ApSingle
type family preserves labels and their ordering.
zipExtendSwap :: forall ℓ τ1 r1 τ2 r2. Dict ( Extend ℓ (τ1, τ2) ( Zip r1 r2) ≈ Zip ( Extend ℓ τ1 r1) ( Extend ℓ τ2 r2)) Source #
Proof that the
Ap
type family preserves labels and their ordering.
mapMinJoin :: forall f r r'. Dict (( Map f r .\/ Map f r') ≈ Map f (r .\/ r')) Source #
Map distributes over MinJoin
apSingleMinJoin :: forall r r' x. Dict (( ApSingle r x .\/ ApSingle r' x) ≈ ApSingle (r .\/ r') x) Source #
ApSingle distributes over MinJoin
type FreeForall r = Forall r Unconstrained1 Source #
FreeForall
can be used when a
Forall
constraint is necessary but there
is no particular constraint we care about.
type FreeBiForall r1 r2 = BiForall r1 r2 Unconstrained2 Source #
FreeForall
can be used when a
BiForall
constraint is necessary but
there is no particular constraint we care about.
freeForall :: forall r c. Forall r c :- Forall r Unconstrained1 Source #
Allow any
Forall
over a row-type, be usable for
Unconstrained1
.
mapForall :: forall f ρ c. Forall ρ c :- Forall ( Map f ρ) ( IsA c f) Source #
This allows us to derive a
Forall (Map f r) ..
from a
Forall r ..
.
apSingleForall :: forall a fs c. Forall fs c :- Forall ( ApSingle fs a) ( ActsOn c a) Source #
This allows us to derive a
Forall (ApSingle f r) ..
from a
Forall f ..
.
subsetJoin :: forall r1 r2 s. Dict (( Subset r1 s, Subset r2 s) ≈ Subset (r1 .+ r2) s) Source #
Two rows are subsets of a third if and only if their disjoint union is a subset of that third.
subsetJoin' :: forall r1 r2 s. Dict (( Subset r1 s, Subset r2 s) ≈ Subset (r1 .// r2) s) Source #
If two rows are each subsets of a third, their join is a subset of the third
subsetRestrict :: forall r s l. Subset r s :- Subset (r .- l) s Source #
If a row is a subset of another, then its restriction is also a subset of the other
subsetTrans :: forall r1 r2 r3. ( Subset r1 r2, Subset r2 r3) :- Subset r1 r3 Source #
Subset is transitive
mapDifference :: forall f r r'. Dict (( Map f r .\\ Map f r') ≈ Map f (r .\\ r')) Source #
Map distributes over Difference
apSingleDifference :: forall r r' x. Dict (( ApSingle r x .\\ ApSingle r' x) ≈ ApSingle (r .\\ r') x) Source #
ApSingle distributes over Difference
Helper Types
class IsA c f a where Source #
A class to capture the idea of
As
so that it can be partially applied in
a context.
Instances
c a => IsA (c :: k1 -> Constraint ) (f :: k1 -> k2) (f a :: k2) Source # | |
Defined in Data.Row.Dictionaries |
This data type is used to for its ability to existentially bind a type
variable. Particularly, it says that for the type
a
, there exists a
t
such that
a ~ f t
and
c t
holds.
class ActsOn c t a where Source #
A class to capture the idea of
As'
so that it can be partially applied in
a context.
Instances
c f => ActsOn (c :: (k1 -> k2) -> Constraint ) (t :: k1) (f t :: k2) Source # | |
Defined in Data.Row.Dictionaries |
Like
As
, but here we know the underlying value is some
f
applied to the
given type
a
.
Re-exports
Values of type
capture a dictionary for a constraint of type
Dict
p
p
.
e.g.
Dict
::Dict
(Eq
Int
)
captures a dictionary that proves we have an:
instanceEq
Int
Pattern matching on the
Dict
constructor will bring this instance into scope.
Instances
HasDict a ( Dict a) | |
a :=> ( Read ( Dict a)) | |
a :=> ( Monoid ( Dict a)) | |
a :=> ( Enum ( Dict a)) | |
a :=> ( Bounded ( Dict a)) | |
() :=> ( Eq ( Dict a)) | |
() :=> ( Ord ( Dict a)) | |
() :=> ( Show ( Dict a)) | |
() :=> ( Semigroup ( Dict a)) | |
a => Bounded ( Dict a) | |
a => Enum ( Dict a) | |
Defined in Data.Constraint succ :: Dict a -> Dict a Source # pred :: Dict a -> Dict a Source # toEnum :: Int -> Dict a Source # fromEnum :: Dict a -> Int Source # enumFrom :: Dict a -> [ Dict a] Source # enumFromThen :: Dict a -> Dict a -> [ Dict a] Source # enumFromTo :: Dict a -> Dict a -> [ Dict a] Source # enumFromThenTo :: Dict a -> Dict a -> Dict a -> [ Dict a] Source # |
|
Eq ( Dict a) | |
( Typeable p, p) => Data ( Dict p) | |
Defined in Data.Constraint gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g. g -> c g) -> Dict p -> c ( Dict p) Source # gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c ( Dict p) Source # toConstr :: Dict p -> Constr Source # dataTypeOf :: Dict p -> DataType Source # dataCast1 :: Typeable t => ( forall d. Data d => c (t d)) -> Maybe (c ( Dict p)) Source # dataCast2 :: Typeable t => ( forall d e. ( Data d, Data e) => c (t d e)) -> Maybe (c ( Dict p)) Source # gmapT :: ( forall b. Data b => b -> b) -> Dict p -> Dict p Source # gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> Dict p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> Dict p -> r Source # gmapQ :: ( forall d. Data d => d -> u) -> Dict p -> [u] Source # gmapQi :: Int -> ( forall d. Data d => d -> u) -> Dict p -> u Source # gmapM :: Monad m => ( forall d. Data d => d -> m d) -> Dict p -> m ( Dict p) Source # gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> Dict p -> m ( Dict p) Source # gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> Dict p -> m ( Dict p) Source # |
|
Ord ( Dict a) | |
a => Read ( Dict a) | |
Show ( Dict a) | |
Semigroup ( Dict a) | |
a => Monoid ( Dict a) | |
NFData ( Dict c) | |
Defined in Data.Constraint |
newtype a :- b infixr 9 Source #
This is the type of entailment.
a
is read as
:-
b
a
"entails"
b
.
With this we can actually build a category for
Constraint
resolution.
e.g.
Because
is a superclass of
Eq
a
, we can show that
Ord
a
entails
Ord
a
.
Eq
a
Because
instance
exists, we can show that
Ord
a =>
Ord
[a]
entails
Ord
a
as well.
Ord
[a]
This relationship is captured in the
:-
entailment type here.
Since
p
and entailment composes,
:-
p
:-
forms the arrows of a
Category
of constraints. However,
Category
only became sufficiently
general to support this instance in GHC 7.8, so prior to 7.8 this instance
is unavailable.
But due to the coherence of instance resolution in Haskell, this
Category
has some very interesting properties. Notably, in the absence of
IncoherentInstances
, this category is "thin", which is to say that
between any two objects (constraints) there is at most one distinguishable
arrow.
This means that for instance, even though there are two ways to derive
, the answers from these two paths _must_ by
construction be equal. This is a property that Haskell offers that is
pretty much unique in the space of languages with things they call "type
classes".
Ord
a
:-
Eq
[a]
What are the two ways?
Well, we can go from
via the
superclass relationship, and then from
Ord
a
:-
Eq
a
via the
instance, or we can go from
Eq
a
:-
Eq
[a]
via the instance
then from
Ord
a
:-
Ord
[a]
through the superclass relationship
and this diagram by definition must "commute".
Ord
[a]
:-
Eq
[a]
Diagrammatically,
Ord a ins / \ cls v v Ord [a] Eq a cls \ / ins v v Eq [a]
This safety net ensures that pretty much anything you can write with this library is sensible and can't break any assumptions on the behalf of library authors.
Instances
Category (:-) |
Possible since GHC 7.8, when
|
() :=> ( Eq (a :- b)) | |
() :=> ( Ord (a :- b)) | |
() :=> ( Show (a :- b)) | |
a => HasDict b (a :- b) | |
Eq (a :- b) |
Assumes
|
( Typeable p, Typeable q, p, q) => Data (p :- q) | |
Defined in Data.Constraint gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g. g -> c g) -> (p :- q) -> c (p :- q) Source # gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c (p :- q) Source # toConstr :: (p :- q) -> Constr Source # dataTypeOf :: (p :- q) -> DataType Source # dataCast1 :: Typeable t => ( forall d. Data d => c (t d)) -> Maybe (c (p :- q)) Source # dataCast2 :: Typeable t => ( forall d e. ( Data d, Data e) => c (t d e)) -> Maybe (c (p :- q)) Source # gmapT :: ( forall b. Data b => b -> b) -> (p :- q) -> p :- q Source # gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> (p :- q) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> (p :- q) -> r Source # gmapQ :: ( forall d. Data d => d -> u) -> (p :- q) -> [u] Source # gmapQi :: Int -> ( forall d. Data d => d -> u) -> (p :- q) -> u Source # gmapM :: Monad m => ( forall d. Data d => d -> m d) -> (p :- q) -> m (p :- q) Source # gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> (p :- q) -> m (p :- q) Source # gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> (p :- q) -> m (p :- q) Source # |
|
Ord (a :- b) |
Assumes
|
Defined in Data.Constraint |
|
Show (a :- b) | |
a => NFData (a :- b) | |
Defined in Data.Constraint |
class HasDict c e | e -> c where Source #
Witnesses that a value of type
e
contains evidence of the constraint
c
.
Mainly intended to allow (
\\
) to be overloaded, since it's a useful operator.
(\\) :: HasDict c e => (c => r) -> e -> r infixl 1 Source #
Operator version of
withDict
, with the arguments flipped
withDict :: HasDict c e => e -> (c => r) -> r Source #
From a
Dict
, takes a value in an environment where the instance
witnessed by the
Dict
is in scope, and evaluates it.
Essentially a deconstruction of a
Dict
into its continuation-style
form.
Can also be used to deconstruct an entailment,
a
, using a context
:-
b
a
.
withDict ::Dict
c -> (c => r) -> r withDict :: a => (a:-
c) -> (c => r) -> r
class Unconstrained Source #
A null constraint
Instances
Unconstrained Source # | |
Defined in Data.Row.Internal |
class Unconstrained1 a Source #
A null constraint of one argument
Instances
Unconstrained1 (a :: k) Source # | |
Defined in Data.Row.Internal |
class Unconstrained2 a b Source #
A null constraint of two arguments
Instances
Unconstrained2 (a :: k1) (b :: k2) Source # | |
Defined in Data.Row.Internal |