Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Documentation
Instances
Generic1 ( These1 f g :: Type -> Type ) Source # | |
( Functor f, Functor g) => Functor ( These1 f g) Source # | |
( Foldable f, Foldable g) => Foldable ( These1 f g) Source # | |
Defined in Data.Functor.These fold :: Monoid m => These1 f g m -> m Source # foldMap :: Monoid m => (a -> m) -> These1 f g a -> m Source # foldMap' :: Monoid m => (a -> m) -> These1 f g a -> m Source # foldr :: (a -> b -> b) -> b -> These1 f g a -> b Source # foldr' :: (a -> b -> b) -> b -> These1 f g a -> b Source # foldl :: (b -> a -> b) -> b -> These1 f g a -> b Source # foldl' :: (b -> a -> b) -> b -> These1 f g a -> b Source # foldr1 :: (a -> a -> a) -> These1 f g a -> a Source # foldl1 :: (a -> a -> a) -> These1 f g a -> a Source # toList :: These1 f g a -> [a] Source # null :: These1 f g a -> Bool Source # length :: These1 f g a -> Int Source # elem :: Eq a => a -> These1 f g a -> Bool Source # maximum :: Ord a => These1 f g a -> a Source # minimum :: Ord a => These1 f g a -> a Source # |
|
( Traversable f, Traversable g) => Traversable ( These1 f g) Source # | |
Defined in Data.Functor.These traverse :: Applicative f0 => (a -> f0 b) -> These1 f g a -> f0 ( These1 f g b) Source # sequenceA :: Applicative f0 => These1 f g (f0 a) -> f0 ( These1 f g a) Source # mapM :: Monad m => (a -> m b) -> These1 f g a -> m ( These1 f g b) Source # sequence :: Monad m => These1 f g (m a) -> m ( These1 f g a) Source # |
|
( Eq1 f, Eq1 g) => Eq1 ( These1 f g) Source # | |
( Ord1 f, Ord1 g) => Ord1 ( These1 f g) Source # | |
Defined in Data.Functor.These |
|
( Read1 f, Read1 g) => Read1 ( These1 f g) Source # | |
Defined in Data.Functor.These liftReadsPrec :: ( Int -> ReadS a) -> ReadS [a] -> Int -> ReadS ( These1 f g a) Source # liftReadList :: ( Int -> ReadS a) -> ReadS [a] -> ReadS [ These1 f g a] Source # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec ( These1 f g a) Source # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [ These1 f g a] Source # |
|
( Show1 f, Show1 g) => Show1 ( These1 f g) Source # | |
( NFData1 f, NFData1 g) => NFData1 ( These1 f g) Source # |
This instance is available only with
|
Defined in Data.Functor.These |
|
( Eq1 f, Eq1 g, Eq a) => Eq ( These1 f g a) Source # | |
( Typeable f, Typeable g, Typeable a, Data (f a), Data (g a)) => Data ( These1 f g a) Source # | |
Defined in Data.Functor.These gfoldl :: ( forall d b. Data d => c (d -> b) -> d -> c b) -> ( forall g0. g0 -> c g0) -> These1 f g a -> c ( These1 f g a) Source # gunfold :: ( forall b r. Data b => c (b -> r) -> c r) -> ( forall r. r -> c r) -> Constr -> c ( These1 f g a) Source # toConstr :: These1 f g a -> Constr Source # dataTypeOf :: These1 f g a -> DataType Source # dataCast1 :: Typeable t => ( forall d. Data d => c (t d)) -> Maybe (c ( These1 f g a)) Source # dataCast2 :: Typeable t => ( forall d e. ( Data d, Data e) => c (t d e)) -> Maybe (c ( These1 f g a)) Source # gmapT :: ( forall b. Data b => b -> b) -> These1 f g a -> These1 f g a Source # gmapQl :: (r -> r' -> r) -> r -> ( forall d. Data d => d -> r') -> These1 f g a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> ( forall d. Data d => d -> r') -> These1 f g a -> r Source # gmapQ :: ( forall d. Data d => d -> u) -> These1 f g a -> [u] Source # gmapQi :: Int -> ( forall d. Data d => d -> u) -> These1 f g a -> u Source # gmapM :: Monad m => ( forall d. Data d => d -> m d) -> These1 f g a -> m ( These1 f g a) Source # gmapMp :: MonadPlus m => ( forall d. Data d => d -> m d) -> These1 f g a -> m ( These1 f g a) Source # gmapMo :: MonadPlus m => ( forall d. Data d => d -> m d) -> These1 f g a -> m ( These1 f g a) Source # |
|
( Ord1 f, Ord1 g, Ord a) => Ord ( These1 f g a) Source # | |
Defined in Data.Functor.These compare :: These1 f g a -> These1 f g a -> Ordering Source # (<) :: These1 f g a -> These1 f g a -> Bool Source # (<=) :: These1 f g a -> These1 f g a -> Bool Source # (>) :: These1 f g a -> These1 f g a -> Bool Source # (>=) :: These1 f g a -> These1 f g a -> Bool Source # max :: These1 f g a -> These1 f g a -> These1 f g a Source # min :: These1 f g a -> These1 f g a -> These1 f g a Source # |
|
( Read1 f, Read1 g, Read a) => Read ( These1 f g a) Source # | |
( Show1 f, Show1 g, Show a) => Show ( These1 f g a) Source # | |
Generic ( These1 f g a) Source # | |
( NFData1 f, NFData1 g, NFData a) => NFData ( These1 f g a) Source # |
This instance is available only with
|
Defined in Data.Functor.These |
|
type Rep1 ( These1 f g :: Type -> Type ) Source # | |
Defined in Data.Functor.These
type
Rep1
(
These1
f g ::
Type
->
Type
) =
D1
('
MetaData
"These1" "Data.Functor.These" "these-1.1.1.1-GeR95OLAr5rCXHhUN7z1Qo" '
False
) (
C1
('
MetaCons
"This1" '
PrefixI
'
False
) (
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec1
f))
:+:
(
C1
('
MetaCons
"That1" '
PrefixI
'
False
) (
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec1
g))
:+:
C1
('
MetaCons
"These1" '
PrefixI
'
False
) (
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec1
f)
:*:
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec1
g))))
|
|
type Rep ( These1 f g a) Source # | |
Defined in Data.Functor.These
type
Rep
(
These1
f g a) =
D1
('
MetaData
"These1" "Data.Functor.These" "these-1.1.1.1-GeR95OLAr5rCXHhUN7z1Qo" '
False
) (
C1
('
MetaCons
"This1" '
PrefixI
'
False
) (
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec0
(f a)))
:+:
(
C1
('
MetaCons
"That1" '
PrefixI
'
False
) (
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec0
(g a)))
:+:
C1
('
MetaCons
"These1" '
PrefixI
'
False
) (
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec0
(f a))
:*:
S1
('
MetaSel
('
Nothing
::
Maybe
Symbol
) '
NoSourceUnpackedness
'
NoSourceStrictness
'
DecidedLazy
) (
Rec0
(g a)))))
|