vector-space-0.16: Vector & affine spaces, linear maps, and derivatives
Copyright (c) Conal Elliott 2008
License BSD3
Maintainer conal@conal.net
Stability experimental
Safe Haskell None
Language Haskell98

Data.Cross

Description

Cross products and normals

Synopsis

Documentation

normal :: ( HasNormal v, InnerSpace v, Floating ( Scalar v)) => v -> v Source #

Normalized normal vector. See also cross .

type One s = s Source #

Singleton

type Two s = (s, s) Source #

Homogeneous pair

type Three s = (s, s, s) Source #

Homogeneous triple

class HasCross2 v where Source #

Cross product of various forms of 2D vectors

Methods

cross2 :: v -> v Source #

Instances

Instances details
AdditiveGroup u => HasCross2 (u, u) Source #
Instance details

Defined in Data.Cross

Methods

cross2 :: (u, u) -> (u, u) Source #

( HasTrie ( Basis a), HasCross2 v) => HasCross2 (a :> v) Source #
Instance details

Defined in Data.Cross

Methods

cross2 :: (a :> v) -> a :> v Source #

class HasCross3 v where Source #

Cross product of various forms of 3D vectors

Methods

cross3 :: v -> v -> v Source #

Instances

Instances details
( HasBasis a, HasTrie ( Basis a), VectorSpace v, HasCross3 v) => HasCross3 (a :> v) Source #
Instance details

Defined in Data.Cross

Methods

cross3 :: (a :> v) -> (a :> v) -> a :> v Source #

Num s => HasCross3 (s, s, s) Source #
Instance details

Defined in Data.Cross

Methods

cross3 :: (s, s, s) -> (s, s, s) -> (s, s, s) Source #