bifunctors-5.5.14: Bifunctors
Copyright (C) 2011-2015 Edward Kmett
License BSD-style (see the file LICENSE)
Maintainer Edward Kmett <ekmett@gmail.com>
Stability provisional
Portability portable
Safe Haskell Trustworthy
Language Haskell2010

Data.Biapplicative

Description

Synopsis

Biapplicative bifunctors

class Bifunctor p => Biapplicative p where Source #

Minimal complete definition

bipure , ( (<<*>>) | biliftA2 )

Methods

bipure :: a -> b -> p a b Source #

(<<*>>) :: p (a -> b) (c -> d) -> p a c -> p b d infixl 4 Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> p a d -> p b e -> p c f Source #

Lift binary functions

(*>>) :: p a b -> p c d -> p c d infixl 4 Source #

a *>> b ≡ bimap (const id) (const id) <<$>> a <<*>> b

(<<*) :: p a b -> p c d -> p a b infixl 4 Source #

a <<* b ≡ bimap const const <<$>> a <<*>> b

Instances

Instances details
Biapplicative (,) Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> (a, b) Source #

(<<*>>) :: (a -> b, c -> d) -> (a, c) -> (b, d) Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> (a, d) -> (b, e) -> (c, f) Source #

(*>>) :: (a, b) -> (c, d) -> (c, d) Source #

(<<*) :: (a, b) -> (c, d) -> (a, b) Source #

Biapplicative Arg Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> Arg a b Source #

(<<*>>) :: Arg (a -> b) (c -> d) -> Arg a c -> Arg b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> Arg a d -> Arg b e -> Arg c f Source #

(*>>) :: Arg a b -> Arg c d -> Arg c d Source #

(<<*) :: Arg a b -> Arg c d -> Arg a b Source #

Monoid x => Biapplicative ( (,,) x) Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> (x, a, b) Source #

(<<*>>) :: (x, a -> b, c -> d) -> (x, a, c) -> (x, b, d) Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> (x, a, d) -> (x, b, e) -> (x, c, f) Source #

(*>>) :: (x, a, b) -> (x, c, d) -> (x, c, d) Source #

(<<*) :: (x, a, b) -> (x, c, d) -> (x, a, b) Source #

Biapplicative ( Const :: Type -> Type -> Type ) Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> Const a b Source #

(<<*>>) :: Const (a -> b) (c -> d) -> Const a c -> Const b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> Const a d -> Const b e -> Const c f Source #

(*>>) :: Const a b -> Const c d -> Const c d Source #

(<<*) :: Const a b -> Const c d -> Const a b Source #

Biapplicative ( Tagged :: Type -> Type -> Type ) Source #
Instance details

Defined in Data.Biapplicative

Biapplicative bi => Biapplicative ( Biap bi) Source #
Instance details

Defined in Data.Bifunctor.Biap

Methods

bipure :: a -> b -> Biap bi a b Source #

(<<*>>) :: Biap bi (a -> b) (c -> d) -> Biap bi a c -> Biap bi b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> Biap bi a d -> Biap bi b e -> Biap bi c f Source #

(*>>) :: Biap bi a b -> Biap bi c d -> Biap bi c d Source #

(<<*) :: Biap bi a b -> Biap bi c d -> Biap bi a b Source #

( Monoid x, Monoid y) => Biapplicative ( (,,,) x y) Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> (x, y, a, b) Source #

(<<*>>) :: (x, y, a -> b, c -> d) -> (x, y, a, c) -> (x, y, b, d) Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> (x, y, a, d) -> (x, y, b, e) -> (x, y, c, f) Source #

(*>>) :: (x, y, a, b) -> (x, y, c, d) -> (x, y, c, d) Source #

(<<*) :: (x, y, a, b) -> (x, y, c, d) -> (x, y, a, b) Source #

( Monoid x, Monoid y, Monoid z) => Biapplicative ( (,,,,) x y z) Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> (x, y, z, a, b) Source #

(<<*>>) :: (x, y, z, a -> b, c -> d) -> (x, y, z, a, c) -> (x, y, z, b, d) Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> (x, y, z, a, d) -> (x, y, z, b, e) -> (x, y, z, c, f) Source #

(*>>) :: (x, y, z, a, b) -> (x, y, z, c, d) -> (x, y, z, c, d) Source #

(<<*) :: (x, y, z, a, b) -> (x, y, z, c, d) -> (x, y, z, a, b) Source #

Applicative f => Biapplicative ( Clown f :: Type -> Type -> Type ) Source #
Instance details

Defined in Data.Bifunctor.Clown

Methods

bipure :: a -> b -> Clown f a b Source #

(<<*>>) :: Clown f (a -> b) (c -> d) -> Clown f a c -> Clown f b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f0) -> Clown f a d -> Clown f b e -> Clown f c f0 Source #

(*>>) :: Clown f a b -> Clown f c d -> Clown f c d Source #

(<<*) :: Clown f a b -> Clown f c d -> Clown f a b Source #

Biapplicative p => Biapplicative ( Flip p) Source #
Instance details

Defined in Data.Bifunctor.Flip

Methods

bipure :: a -> b -> Flip p a b Source #

(<<*>>) :: Flip p (a -> b) (c -> d) -> Flip p a c -> Flip p b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> Flip p a d -> Flip p b e -> Flip p c f Source #

(*>>) :: Flip p a b -> Flip p c d -> Flip p c d Source #

(<<*) :: Flip p a b -> Flip p c d -> Flip p a b Source #

Applicative g => Biapplicative ( Joker g :: Type -> Type -> Type ) Source #
Instance details

Defined in Data.Bifunctor.Joker

Methods

bipure :: a -> b -> Joker g a b Source #

(<<*>>) :: Joker g (a -> b) (c -> d) -> Joker g a c -> Joker g b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> Joker g a d -> Joker g b e -> Joker g c f Source #

(*>>) :: Joker g a b -> Joker g c d -> Joker g c d Source #

(<<*) :: Joker g a b -> Joker g c d -> Joker g a b Source #

Biapplicative p => Biapplicative ( WrappedBifunctor p) Source #
Instance details

Defined in Data.Bifunctor.Wrapped

( Monoid x, Monoid y, Monoid z, Monoid w) => Biapplicative ( (,,,,,) x y z w) Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> (x, y, z, w, a, b) Source #

(<<*>>) :: (x, y, z, w, a -> b, c -> d) -> (x, y, z, w, a, c) -> (x, y, z, w, b, d) Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> (x, y, z, w, a, d) -> (x, y, z, w, b, e) -> (x, y, z, w, c, f) Source #

(*>>) :: (x, y, z, w, a, b) -> (x, y, z, w, c, d) -> (x, y, z, w, c, d) Source #

(<<*) :: (x, y, z, w, a, b) -> (x, y, z, w, c, d) -> (x, y, z, w, a, b) Source #

( Biapplicative f, Biapplicative g) => Biapplicative ( Product f g) Source #
Instance details

Defined in Data.Bifunctor.Product

Methods

bipure :: a -> b -> Product f g a b Source #

(<<*>>) :: Product f g (a -> b) (c -> d) -> Product f g a c -> Product f g b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f0) -> Product f g a d -> Product f g b e -> Product f g c f0 Source #

(*>>) :: Product f g a b -> Product f g c d -> Product f g c d Source #

(<<*) :: Product f g a b -> Product f g c d -> Product f g a b Source #

( Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Biapplicative ( (,,,,,,) x y z w v) Source #
Instance details

Defined in Data.Biapplicative

Methods

bipure :: a -> b -> (x, y, z, w, v, a, b) Source #

(<<*>>) :: (x, y, z, w, v, a -> b, c -> d) -> (x, y, z, w, v, a, c) -> (x, y, z, w, v, b, d) Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f) -> (x, y, z, w, v, a, d) -> (x, y, z, w, v, b, e) -> (x, y, z, w, v, c, f) Source #

(*>>) :: (x, y, z, w, v, a, b) -> (x, y, z, w, v, c, d) -> (x, y, z, w, v, c, d) Source #

(<<*) :: (x, y, z, w, v, a, b) -> (x, y, z, w, v, c, d) -> (x, y, z, w, v, a, b) Source #

( Applicative f, Biapplicative p) => Biapplicative ( Tannen f p) Source #
Instance details

Defined in Data.Bifunctor.Tannen

Methods

bipure :: a -> b -> Tannen f p a b Source #

(<<*>>) :: Tannen f p (a -> b) (c -> d) -> Tannen f p a c -> Tannen f p b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f0) -> Tannen f p a d -> Tannen f p b e -> Tannen f p c f0 Source #

(*>>) :: Tannen f p a b -> Tannen f p c d -> Tannen f p c d Source #

(<<*) :: Tannen f p a b -> Tannen f p c d -> Tannen f p a b Source #

( Biapplicative p, Applicative f, Applicative g) => Biapplicative ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

bipure :: a -> b -> Biff p f g a b Source #

(<<*>>) :: Biff p f g (a -> b) (c -> d) -> Biff p f g a c -> Biff p f g b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f0) -> Biff p f g a d -> Biff p f g b e -> Biff p f g c f0 Source #

(*>>) :: Biff p f g a b -> Biff p f g c d -> Biff p f g c d Source #

(<<*) :: Biff p f g a b -> Biff p f g c d -> Biff p f g a b Source #

(<<$>>) :: (a -> b) -> a -> b infixl 4 Source #

(<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d infixl 4 Source #

biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h Source #

Lift ternary functions

traverseBia :: ( Traversable t, Biapplicative p) => (a -> p b c) -> t a -> p (t b) (t c) Source #

Traverse a Traversable container in a Biapplicative .

traverseBia satisfies the following properties:

Pairing
traverseBia (,) t = (t, t)
Composition
traverseBia (Biff . bimap g h . f) = Biff . bimap (traverse g) (traverse h) . traverseBia f
traverseBia (Tannen . fmap f . g) = Tannen . fmap (traverseBia f) . traverse g
Naturality
 t . traverseBia f = traverseBia (t . f)

for every biapplicative transformation t .

A biapplicative transformation from a Biapplicative P to a Biapplicative Q is a function

t :: P a b -> Q a b

preserving the Biapplicative operations. That is,

Performance note

traverseBia is fairly efficient, and uses compiler rewrite rules to be even more efficient for a few important types like [] . However, if performance is critical, you might consider writing a container-specific implementation.

sequenceBia :: ( Traversable t, Biapplicative p) => t (p b c) -> p (t b) (t c) Source #

Perform all the Biappicative actions in a Traversable container and produce a container with all the results.

sequenceBia = traverseBia id

traverseBiaWith :: forall p a b c s t. Biapplicative p => ( forall f x. Applicative f => (a -> f x) -> s -> f (t x)) -> (a -> p b c) -> s -> p (t b) (t c) Source #

A version of traverseBia that doesn't care how the traversal is done.

traverseBia = traverseBiaWith traverse