bifunctors-5.5.14: Bifunctors
Copyright (C) 2008-2016 Edward Kmett
License BSD-style (see the file LICENSE)
Maintainer Edward Kmett <ekmett@gmail.com>
Stability provisional
Portability portable
Safe Haskell Safe
Language Haskell2010

Data.Bifunctor.Biff

Description

Synopsis

Documentation

newtype Biff p f g a b Source #

Compose two Functor s on the inside of a Bifunctor .

Constructors

Biff

Fields

Instances

Instances details
Functor (p (f a)) => Generic1 ( Biff p f g a :: k3 -> Type ) Source #
Instance details

Defined in Data.Bifunctor.Biff

Associated Types

type Rep1 ( Biff p f g a) :: k -> Type Source #

Methods

from1 :: forall (a0 :: k). Biff p f g a a0 -> Rep1 ( Biff p f g a) a0 Source #

to1 :: forall (a0 :: k). Rep1 ( Biff p f g a) a0 -> Biff p f g a a0 Source #

( Bitraversable p, Traversable f, Traversable g) => Bitraversable ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Biff p f g a b -> f0 ( Biff p f g c d) Source #

( Bifoldable p, Foldable f, Foldable g) => Bifoldable ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

bifold :: Monoid m => Biff p f g m m -> m Source #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Biff p f g a b -> m Source #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Biff p f g a b -> c Source #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Biff p f g a b -> c Source #

( Bifunctor p, Functor f, Functor g) => Bifunctor ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

bimap :: (a -> b) -> (c -> d) -> Biff p f g a c -> Biff p f g b d Source #

first :: (a -> b) -> Biff p f g a c -> Biff p f g b c Source #

second :: (b -> c) -> Biff p f g a b -> Biff p f g a c Source #

( Eq2 p, Eq1 f, Eq1 g) => Eq2 ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

liftEq2 :: (a -> b -> Bool ) -> (c -> d -> Bool ) -> Biff p f g a c -> Biff p f g b d -> Bool Source #

( Ord2 p, Ord1 f, Ord1 g) => Ord2 ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

liftCompare2 :: (a -> b -> Ordering ) -> (c -> d -> Ordering ) -> Biff p f g a c -> Biff p f g b d -> Ordering Source #

( Read2 p, Read1 f, Read1 g) => Read2 ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

( Show2 p, Show1 f, Show1 g) => Show2 ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

liftShowsPrec2 :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> ( Int -> b -> ShowS ) -> ([b] -> ShowS ) -> Int -> Biff p f g a b -> ShowS Source #

liftShowList2 :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> ( Int -> b -> ShowS ) -> ([b] -> ShowS ) -> [ Biff p f g a b] -> ShowS Source #

( Biapplicative p, Applicative f, Applicative g) => Biapplicative ( Biff p f g) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

bipure :: a -> b -> Biff p f g a b Source #

(<<*>>) :: Biff p f g (a -> b) (c -> d) -> Biff p f g a c -> Biff p f g b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f0) -> Biff p f g a d -> Biff p f g b e -> Biff p f g c f0 Source #

(*>>) :: Biff p f g a b -> Biff p f g c d -> Biff p f g c d Source #

(<<*) :: Biff p f g a b -> Biff p f g c d -> Biff p f g a b Source #

( Bifunctor p, Functor g) => Functor ( Biff p f g a) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

fmap :: (a0 -> b) -> Biff p f g a a0 -> Biff p f g a b Source #

(<$) :: a0 -> Biff p f g a b -> Biff p f g a a0 Source #

( Bifoldable p, Foldable g) => Foldable ( Biff p f g a) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

fold :: Monoid m => Biff p f g a m -> m Source #

foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m Source #

foldMap' :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m Source #

foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b Source #

foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b Source #

foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b Source #

foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b Source #

foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 Source #

foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 Source #

toList :: Biff p f g a a0 -> [a0] Source #

null :: Biff p f g a a0 -> Bool Source #

length :: Biff p f g a a0 -> Int Source #

elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool Source #

maximum :: Ord a0 => Biff p f g a a0 -> a0 Source #

minimum :: Ord a0 => Biff p f g a a0 -> a0 Source #

sum :: Num a0 => Biff p f g a a0 -> a0 Source #

product :: Num a0 => Biff p f g a a0 -> a0 Source #

( Bitraversable p, Traversable g) => Traversable ( Biff p f g a) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Biff p f g a a0 -> f0 ( Biff p f g a b) Source #

sequenceA :: Applicative f0 => Biff p f g a (f0 a0) -> f0 ( Biff p f g a a0) Source #

mapM :: Monad m => (a0 -> m b) -> Biff p f g a a0 -> m ( Biff p f g a b) Source #

sequence :: Monad m => Biff p f g a (m a0) -> m ( Biff p f g a a0) Source #

( Eq2 p, Eq1 f, Eq1 g, Eq a) => Eq1 ( Biff p f g a) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

liftEq :: (a0 -> b -> Bool ) -> Biff p f g a a0 -> Biff p f g a b -> Bool Source #

( Ord2 p, Ord1 f, Ord1 g, Ord a) => Ord1 ( Biff p f g a) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

liftCompare :: (a0 -> b -> Ordering ) -> Biff p f g a a0 -> Biff p f g a b -> Ordering Source #

( Read2 p, Read1 f, Read1 g, Read a) => Read1 ( Biff p f g a) Source #
Instance details

Defined in Data.Bifunctor.Biff

( Show2 p, Show1 f, Show1 g, Show a) => Show1 ( Biff p f g a) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

liftShowsPrec :: ( Int -> a0 -> ShowS ) -> ([a0] -> ShowS ) -> Int -> Biff p f g a a0 -> ShowS Source #

liftShowList :: ( Int -> a0 -> ShowS ) -> ([a0] -> ShowS ) -> [ Biff p f g a a0] -> ShowS Source #

Eq (p (f a) (g b)) => Eq ( Biff p f g a b) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

(==) :: Biff p f g a b -> Biff p f g a b -> Bool Source #

(/=) :: Biff p f g a b -> Biff p f g a b -> Bool Source #

Ord (p (f a) (g b)) => Ord ( Biff p f g a b) Source #
Instance details

Defined in Data.Bifunctor.Biff

Methods

compare :: Biff p f g a b -> Biff p f g a b -> Ordering Source #

(<) :: Biff p f g a b -> Biff p f g a b -> Bool Source #

(<=) :: Biff p f g a b -> Biff p f g a b -> Bool Source #

(>) :: Biff p f g a b -> Biff p f g a b -> Bool Source #

(>=) :: Biff p f g a b -> Biff p f g a b -> Bool Source #

max :: Biff p f g a b -> Biff p f g a b -> Biff p f g a b Source #

min :: Biff p f g a b -> Biff p f g a b -> Biff p f g a b Source #

Read (p (f a) (g b)) => Read ( Biff p f g a b) Source #
Instance details

Defined in Data.Bifunctor.Biff

Show (p (f a) (g b)) => Show ( Biff p f g a b) Source #
Instance details

Defined in Data.Bifunctor.Biff

Generic ( Biff p f g a b) Source #
Instance details

Defined in Data.Bifunctor.Biff

Associated Types

type Rep ( Biff p f g a b) :: Type -> Type Source #

Methods

from :: Biff p f g a b -> Rep ( Biff p f g a b) x Source #

to :: Rep ( Biff p f g a b) x -> Biff p f g a b Source #

type Rep1 ( Biff p f g a :: k3 -> Type ) Source #
Instance details

Defined in Data.Bifunctor.Biff

type Rep1 ( Biff p f g a :: k3 -> Type ) = D1 (' MetaData "Biff" "Data.Bifunctor.Biff" "bifunctors-5.5.14-4o2vxpA6iYN8K0rfLgtyzm" ' True ) ( C1 (' MetaCons "Biff" ' PrefixI ' True ) ( S1 (' MetaSel (' Just "runBiff") ' NoSourceUnpackedness ' NoSourceStrictness ' DecidedLazy ) (p (f a) :.: Rec1 g)))
type Rep ( Biff p f g a b) Source #
Instance details

Defined in Data.Bifunctor.Biff

type Rep ( Biff p f g a b) = D1 (' MetaData "Biff" "Data.Bifunctor.Biff" "bifunctors-5.5.14-4o2vxpA6iYN8K0rfLgtyzm" ' True ) ( C1 (' MetaCons "Biff" ' PrefixI ' True ) ( S1 (' MetaSel (' Just "runBiff") ' NoSourceUnpackedness ' NoSourceStrictness ' DecidedLazy ) ( Rec0 (p (f a) (g b)))))