optics-core-0.4.1: Optics as an abstract interface: core definitions
Safe Haskell None
Language Haskell2010

Optics.Indexed.Core

Description

This module defines basic functionality for indexed optics. See the "Indexed optics" section of the overview documentation in the Optics module of the main optics package for more details.

Synopsis

Class for optic kinds that can be indexed

class IxOptic k s t a b where Source #

Class for optic kinds that can have indices.

Methods

noIx :: NonEmptyIndices is => Optic k is s t a b -> Optic k NoIx s t a b Source #

Convert an indexed optic to its unindexed equivalent.

Instances

Instances details
(s ~ t, a ~ b) => IxOptic A_Fold s t a b Source #
Instance details

Defined in Optics.Indexed.Core

(s ~ t, a ~ b) => IxOptic An_AffineFold s t a b Source #
Instance details

Defined in Optics.Indexed.Core

(s ~ t, a ~ b) => IxOptic A_Getter s t a b Source #
Instance details

Defined in Optics.Indexed.Core

IxOptic A_Setter s t a b Source #
Instance details

Defined in Optics.Indexed.Core

IxOptic A_Traversal s t a b Source #
Instance details

Defined in Optics.Indexed.Core

IxOptic An_AffineTraversal s t a b Source #
Instance details

Defined in Optics.Indexed.Core

IxOptic A_Lens s t a b Source #
Instance details

Defined in Optics.Indexed.Core

conjoined :: is `HasSingleIndex` i => Optic k NoIx s t a b -> Optic k is s t a b -> Optic k is s t a b Source #

Construct a conjoined indexed optic that provides a separate code path when used without indices. Useful for defining indexed optics that are as efficient as their unindexed equivalents when used without indices.

Note: conjoined f g is well-defined if and only if f ≡ noIx g .

Composition of indexed optics

(%) :: forall k l m is js ks s t u v a b. ( JoinKinds k l m, AppendIndices is js ks) => Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b infixl 9 Source #

Compose two optics of compatible flavours.

Returns an optic of the appropriate supertype. If either or both optics are indexed, the composition preserves all the indices.

(<%>) :: ( JoinKinds k l m, IxOptic m s t a b, is `HasSingleIndex` i, js `HasSingleIndex` j) => Optic k is s t u v -> Optic l js u v a b -> Optic m ( WithIx (i, j)) s t a b infixl 9 Source #

Compose two indexed optics. Their indices are composed as a pair.

>>> itoListOf (ifolded <%> ifolded) ["foo", "bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]

(%>) :: ( JoinKinds k l m, IxOptic k s t u v, NonEmptyIndices is) => Optic k is s t u v -> Optic l js u v a b -> Optic m js s t a b infixl 9 Source #

Compose two indexed optics and drop indices of the left one. (If you want to compose a non-indexed and an indexed optic, you can just use ( % ).)

>>> itoListOf (ifolded %> ifolded) ["foo", "bar"]
[(0,'f'),(1,'o'),(2,'o'),(0,'b'),(1,'a'),(2,'r')]

(<%) :: ( JoinKinds k l m, IxOptic l u v a b, NonEmptyIndices js) => Optic k is s t u v -> Optic l js u v a b -> Optic m is s t a b infixl 9 Source #

Compose two indexed optics and drop indices of the right one. (If you want to compose an indexed and a non-indexed optic, you can just use ( % ).)

>>> itoListOf (ifolded <% ifolded) ["foo", "bar"]
[(0,'f'),(0,'o'),(0,'o'),(1,'b'),(1,'a'),(1,'r')]

reindexed :: is `HasSingleIndex` i => (i -> j) -> Optic k is s t a b -> Optic k ( WithIx j) s t a b Source #

Remap the index.

>>> itoListOf (reindexed succ ifolded) "foo"
[(1,'f'),(2,'o'),(3,'o')]
>>> itoListOf (ifolded %& reindexed succ) "foo"
[(1,'f'),(2,'o'),(3,'o')]

icompose :: (i -> j -> ix) -> Optic k '[i, j] s t a b -> Optic k ( WithIx ix) s t a b Source #

Flatten indices obtained from two indexed optics.

>>> itoListOf (ifolded % ifolded %& icompose (,)) ["foo","bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]

icompose3 :: (i1 -> i2 -> i3 -> ix) -> Optic k '[i1, i2, i3] s t a b -> Optic k ( WithIx ix) s t a b Source #

Flatten indices obtained from three indexed optics.

>>> itoListOf (ifolded % ifolded % ifolded %& icompose3 (,,)) [["foo","bar"],["xyz"]]
[((0,0,0),'f'),((0,0,1),'o'),((0,0,2),'o'),((0,1,0),'b'),((0,1,1),'a'),((0,1,2),'r'),((1,0,0),'x'),((1,0,1),'y'),((1,0,2),'z')]

icompose4 :: (i1 -> i2 -> i3 -> i4 -> ix) -> Optic k '[i1, i2, i3, i4] s t a b -> Optic k ( WithIx ix) s t a b Source #

Flatten indices obtained from four indexed optics.

icompose5 :: (i1 -> i2 -> i3 -> i4 -> i5 -> ix) -> Optic k '[i1, i2, i3, i4, i5] s t a b -> Optic k ( WithIx ix) s t a b Source #

Flatten indices obtained from five indexed optics.

icomposeN :: forall k i is s t a b. ( CurryCompose is, NonEmptyIndices is) => Curry is i -> Optic k is s t a b -> Optic k ( WithIx i) s t a b Source #

Flatten indices obtained from arbitrary number of indexed optics.

Indexed optic flavours

Functors with index

class Functor f => FunctorWithIndex i (f :: Type -> Type ) | f -> i where Source #

A Functor with an additional index.

Instances must satisfy a modified form of the Functor laws:

imap f . imap g ≡ imap (\i -> f i . g i)
imap (\_ a -> a) ≡ id

Minimal complete definition

Nothing

Methods

imap :: (i -> a -> b) -> f a -> f b Source #

Map with access to the index.

Instances

Instances details
FunctorWithIndex Int []

The position in the list is available as the index.

Instance details

Defined in WithIndex

Methods

imap :: ( Int -> a -> b) -> [a] -> [b] Source #

FunctorWithIndex Int ZipList

Same instance as for [] .

Instance details

Defined in WithIndex

Methods

imap :: ( Int -> a -> b) -> ZipList a -> ZipList b Source #

FunctorWithIndex Int NonEmpty
Instance details

Defined in WithIndex

Methods

imap :: ( Int -> a -> b) -> NonEmpty a -> NonEmpty b Source #

FunctorWithIndex Int IntMap
Instance details

Defined in WithIndex

Methods

imap :: ( Int -> a -> b) -> IntMap a -> IntMap b Source #

FunctorWithIndex Int Seq

The position in the Seq is available as the index.

Instance details

Defined in WithIndex

Methods

imap :: ( Int -> a -> b) -> Seq a -> Seq b Source #

FunctorWithIndex () Maybe
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Maybe a -> Maybe b Source #

FunctorWithIndex () Par1
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Par1 a -> Par1 b Source #

FunctorWithIndex () Identity
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Identity a -> Identity b Source #

FunctorWithIndex k ( Map k)
Instance details

Defined in WithIndex

Methods

imap :: (k -> a -> b) -> Map k a -> Map k b Source #

FunctorWithIndex k ( (,) k)
Instance details

Defined in WithIndex

Methods

imap :: (k -> a -> b) -> (k, a) -> (k, b) Source #

Ix i => FunctorWithIndex i ( Array i)
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Array i a -> Array i b Source #

FunctorWithIndex Void ( V1 :: Type -> Type )
Instance details

Defined in WithIndex

Methods

imap :: ( Void -> a -> b) -> V1 a -> V1 b Source #

FunctorWithIndex Void ( U1 :: Type -> Type )
Instance details

Defined in WithIndex

Methods

imap :: ( Void -> a -> b) -> U1 a -> U1 b Source #

FunctorWithIndex Void ( Proxy :: Type -> Type )
Instance details

Defined in WithIndex

Methods

imap :: ( Void -> a -> b) -> Proxy a -> Proxy b Source #

FunctorWithIndex i f => FunctorWithIndex i ( Reverse f)
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Reverse f a -> Reverse f b Source #

FunctorWithIndex i f => FunctorWithIndex i ( Rec1 f)
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Rec1 f a -> Rec1 f b Source #

FunctorWithIndex i m => FunctorWithIndex i ( IdentityT m)
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> IdentityT m a -> IdentityT m b Source #

FunctorWithIndex i f => FunctorWithIndex i ( Backwards f)
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Backwards f a -> Backwards f b Source #

FunctorWithIndex Void ( Const e :: Type -> Type )
Instance details

Defined in WithIndex

Methods

imap :: ( Void -> a -> b) -> Const e a -> Const e b Source #

FunctorWithIndex Void ( Constant e :: Type -> Type )
Instance details

Defined in WithIndex

Methods

imap :: ( Void -> a -> b) -> Constant e a -> Constant e b Source #

FunctorWithIndex r ((->) r :: Type -> Type )
Instance details

Defined in WithIndex

Methods

imap :: (r -> a -> b) -> (r -> a) -> r -> b Source #

FunctorWithIndex Void ( K1 i c :: Type -> Type )
Instance details

Defined in WithIndex

Methods

imap :: ( Void -> a -> b) -> K1 i c a -> K1 i c b Source #

FunctorWithIndex [ Int ] Tree
Instance details

Defined in WithIndex

Methods

imap :: ([ Int ] -> a -> b) -> Tree a -> Tree b Source #

FunctorWithIndex i m => FunctorWithIndex (e, i) ( ReaderT e m)
Instance details

Defined in WithIndex

Methods

imap :: ((e, i) -> a -> b) -> ReaderT e m a -> ReaderT e m b Source #

( FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex ( Either i j) ( Sum f g)
Instance details

Defined in WithIndex

Methods

imap :: ( Either i j -> a -> b) -> Sum f g a -> Sum f g b Source #

( FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex ( Either i j) ( Product f g)
Instance details

Defined in WithIndex

Methods

imap :: ( Either i j -> a -> b) -> Product f g a -> Product f g b Source #

( FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex ( Either i j) (f :+: g)
Instance details

Defined in WithIndex

Methods

imap :: ( Either i j -> a -> b) -> (f :+: g) a -> (f :+: g) b Source #

( FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex ( Either i j) (f :*: g)
Instance details

Defined in WithIndex

Methods

imap :: ( Either i j -> a -> b) -> (f :*: g) a -> (f :*: g) b Source #

( FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) ( Compose f g)
Instance details

Defined in WithIndex

Methods

imap :: ((i, j) -> a -> b) -> Compose f g a -> Compose f g b Source #

( FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (f :.: g)
Instance details

Defined in WithIndex

Methods

imap :: ((i, j) -> a -> b) -> (f :.: g) a -> (f :.: g) b Source #

Foldable with index

class Foldable f => FoldableWithIndex i (f :: Type -> Type ) | f -> i where Source #

A container that supports folding with an additional index.

Minimal complete definition

Nothing

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m Source #

Fold a container by mapping value to an arbitrary Monoid with access to the index i .

When you don't need access to the index then foldMap is more flexible in what it accepts.

foldMapifoldMap . const

ifoldMap' :: Monoid m => (i -> a -> m) -> f a -> m Source #

A variant of ifoldMap that is strict in the accumulator.

When you don't need access to the index then foldMap' is more flexible in what it accepts.

foldMap'ifoldMap' . const

ifoldr :: (i -> a -> b -> b) -> b -> f a -> b Source #

Right-associative fold of an indexed container with access to the index i .

When you don't need access to the index then foldr is more flexible in what it accepts.

foldrifoldr . const

ifoldl :: (i -> b -> a -> b) -> b -> f a -> b Source #

Left-associative fold of an indexed container with access to the index i .

When you don't need access to the index then foldl is more flexible in what it accepts.

foldlifoldl . const

ifoldr' :: (i -> a -> b -> b) -> b -> f a -> b Source #

Strictly fold right over the elements of a structure with access to the index i .

When you don't need access to the index then foldr' is more flexible in what it accepts.

foldr'ifoldr' . const

ifoldl' :: (i -> b -> a -> b) -> b -> f a -> b Source #

Fold over the elements of a structure with an index, associating to the left, but strictly .

When you don't need access to the index then foldlOf' is more flexible in what it accepts.

foldl' l ≡ ifoldl' l . const

Instances

Instances details
FoldableWithIndex Int []
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Int -> a -> m) -> [a] -> m Source #

ifoldMap' :: Monoid m => ( Int -> a -> m) -> [a] -> m Source #

ifoldr :: ( Int -> a -> b -> b) -> b -> [a] -> b Source #

ifoldl :: ( Int -> b -> a -> b) -> b -> [a] -> b Source #

ifoldr' :: ( Int -> a -> b -> b) -> b -> [a] -> b Source #

ifoldl' :: ( Int -> b -> a -> b) -> b -> [a] -> b Source #

FoldableWithIndex Int ZipList
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Int -> a -> m) -> ZipList a -> m Source #

ifoldMap' :: Monoid m => ( Int -> a -> m) -> ZipList a -> m Source #

ifoldr :: ( Int -> a -> b -> b) -> b -> ZipList a -> b Source #

ifoldl :: ( Int -> b -> a -> b) -> b -> ZipList a -> b Source #

ifoldr' :: ( Int -> a -> b -> b) -> b -> ZipList a -> b Source #

ifoldl' :: ( Int -> b -> a -> b) -> b -> ZipList a -> b Source #

FoldableWithIndex Int NonEmpty
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Int -> a -> m) -> NonEmpty a -> m Source #

ifoldMap' :: Monoid m => ( Int -> a -> m) -> NonEmpty a -> m Source #

ifoldr :: ( Int -> a -> b -> b) -> b -> NonEmpty a -> b Source #

ifoldl :: ( Int -> b -> a -> b) -> b -> NonEmpty a -> b Source #

ifoldr' :: ( Int -> a -> b -> b) -> b -> NonEmpty a -> b Source #

ifoldl' :: ( Int -> b -> a -> b) -> b -> NonEmpty a -> b Source #

FoldableWithIndex Int IntMap
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Int -> a -> m) -> IntMap a -> m Source #

ifoldMap' :: Monoid m => ( Int -> a -> m) -> IntMap a -> m Source #

ifoldr :: ( Int -> a -> b -> b) -> b -> IntMap a -> b Source #

ifoldl :: ( Int -> b -> a -> b) -> b -> IntMap a -> b Source #

ifoldr' :: ( Int -> a -> b -> b) -> b -> IntMap a -> b Source #

ifoldl' :: ( Int -> b -> a -> b) -> b -> IntMap a -> b Source #

FoldableWithIndex Int Seq
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Int -> a -> m) -> Seq a -> m Source #

ifoldMap' :: Monoid m => ( Int -> a -> m) -> Seq a -> m Source #

ifoldr :: ( Int -> a -> b -> b) -> b -> Seq a -> b Source #

ifoldl :: ( Int -> b -> a -> b) -> b -> Seq a -> b Source #

ifoldr' :: ( Int -> a -> b -> b) -> b -> Seq a -> b Source #

ifoldl' :: ( Int -> b -> a -> b) -> b -> Seq a -> b Source #

FoldableWithIndex () Maybe
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Maybe a -> m Source #

ifoldMap' :: Monoid m => (() -> a -> m) -> Maybe a -> m Source #

ifoldr :: (() -> a -> b -> b) -> b -> Maybe a -> b Source #

ifoldl :: (() -> b -> a -> b) -> b -> Maybe a -> b Source #

ifoldr' :: (() -> a -> b -> b) -> b -> Maybe a -> b Source #

ifoldl' :: (() -> b -> a -> b) -> b -> Maybe a -> b Source #

FoldableWithIndex () Par1
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Par1 a -> m Source #

ifoldMap' :: Monoid m => (() -> a -> m) -> Par1 a -> m Source #

ifoldr :: (() -> a -> b -> b) -> b -> Par1 a -> b Source #

ifoldl :: (() -> b -> a -> b) -> b -> Par1 a -> b Source #

ifoldr' :: (() -> a -> b -> b) -> b -> Par1 a -> b Source #

ifoldl' :: (() -> b -> a -> b) -> b -> Par1 a -> b Source #

FoldableWithIndex () Identity
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Identity a -> m Source #

ifoldMap' :: Monoid m => (() -> a -> m) -> Identity a -> m Source #

ifoldr :: (() -> a -> b -> b) -> b -> Identity a -> b Source #

ifoldl :: (() -> b -> a -> b) -> b -> Identity a -> b Source #

ifoldr' :: (() -> a -> b -> b) -> b -> Identity a -> b Source #

ifoldl' :: (() -> b -> a -> b) -> b -> Identity a -> b Source #

FoldableWithIndex k ( Map k)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (k -> a -> m) -> Map k a -> m Source #

ifoldMap' :: Monoid m => (k -> a -> m) -> Map k a -> m Source #

ifoldr :: (k -> a -> b -> b) -> b -> Map k a -> b Source #

ifoldl :: (k -> b -> a -> b) -> b -> Map k a -> b Source #

ifoldr' :: (k -> a -> b -> b) -> b -> Map k a -> b Source #

ifoldl' :: (k -> b -> a -> b) -> b -> Map k a -> b Source #

FoldableWithIndex k ( (,) k)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (k -> a -> m) -> (k, a) -> m Source #

ifoldMap' :: Monoid m => (k -> a -> m) -> (k, a) -> m Source #

ifoldr :: (k -> a -> b -> b) -> b -> (k, a) -> b Source #

ifoldl :: (k -> b -> a -> b) -> b -> (k, a) -> b Source #

ifoldr' :: (k -> a -> b -> b) -> b -> (k, a) -> b Source #

ifoldl' :: (k -> b -> a -> b) -> b -> (k, a) -> b Source #

Ix i => FoldableWithIndex i ( Array i)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Array i a -> m Source #

ifoldMap' :: Monoid m => (i -> a -> m) -> Array i a -> m Source #

ifoldr :: (i -> a -> b -> b) -> b -> Array i a -> b Source #

ifoldl :: (i -> b -> a -> b) -> b -> Array i a -> b Source #

ifoldr' :: (i -> a -> b -> b) -> b -> Array i a -> b Source #

ifoldl' :: (i -> b -> a -> b) -> b -> Array i a -> b Source #

FoldableWithIndex Void ( V1 :: Type -> Type )
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Void -> a -> m) -> V1 a -> m Source #

ifoldMap' :: Monoid m => ( Void -> a -> m) -> V1 a -> m Source #

ifoldr :: ( Void -> a -> b -> b) -> b -> V1 a -> b Source #

ifoldl :: ( Void -> b -> a -> b) -> b -> V1 a -> b Source #

ifoldr' :: ( Void -> a -> b -> b) -> b -> V1 a -> b Source #

ifoldl' :: ( Void -> b -> a -> b) -> b -> V1 a -> b Source #

FoldableWithIndex Void ( U1 :: Type -> Type )
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Void -> a -> m) -> U1 a -> m Source #

ifoldMap' :: Monoid m => ( Void -> a -> m) -> U1 a -> m Source #

ifoldr :: ( Void -> a -> b -> b) -> b -> U1 a -> b Source #

ifoldl :: ( Void -> b -> a -> b) -> b -> U1 a -> b Source #

ifoldr' :: ( Void -> a -> b -> b) -> b -> U1 a -> b Source #

ifoldl' :: ( Void -> b -> a -> b) -> b -> U1 a -> b Source #

FoldableWithIndex Void ( Proxy :: Type -> Type )
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Void -> a -> m) -> Proxy a -> m Source #

ifoldMap' :: Monoid m => ( Void -> a -> m) -> Proxy a -> m Source #

ifoldr :: ( Void -> a -> b -> b) -> b -> Proxy a -> b Source #

ifoldl :: ( Void -> b -> a -> b) -> b -> Proxy a -> b Source #

ifoldr' :: ( Void -> a -> b -> b) -> b -> Proxy a -> b Source #

ifoldl' :: ( Void -> b -> a -> b) -> b -> Proxy a -> b Source #

FoldableWithIndex i f => FoldableWithIndex i ( Reverse f)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Reverse f a -> m Source #

ifoldMap' :: Monoid m => (i -> a -> m) -> Reverse f a -> m Source #

ifoldr :: (i -> a -> b -> b) -> b -> Reverse f a -> b Source #

ifoldl :: (i -> b -> a -> b) -> b -> Reverse f a -> b Source #

ifoldr' :: (i -> a -> b -> b) -> b -> Reverse f a -> b Source #

ifoldl' :: (i -> b -> a -> b) -> b -> Reverse f a -> b Source #

FoldableWithIndex i f => FoldableWithIndex i ( Rec1 f)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Rec1 f a -> m Source #

ifoldMap' :: Monoid m => (i -> a -> m) -> Rec1 f a -> m Source #

ifoldr :: (i -> a -> b -> b) -> b -> Rec1 f a -> b Source #

ifoldl :: (i -> b -> a -> b) -> b -> Rec1 f a -> b Source #

ifoldr' :: (i -> a -> b -> b) -> b -> Rec1 f a -> b Source #

ifoldl' :: (i -> b -> a -> b) -> b -> Rec1 f a -> b Source #

FoldableWithIndex i m => FoldableWithIndex i ( IdentityT m)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 Source #

ifoldMap' :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 Source #

ifoldr :: (i -> a -> b -> b) -> b -> IdentityT m a -> b Source #

ifoldl :: (i -> b -> a -> b) -> b -> IdentityT m a -> b Source #

ifoldr' :: (i -> a -> b -> b) -> b -> IdentityT m a -> b Source #

ifoldl' :: (i -> b -> a -> b) -> b -> IdentityT m a -> b Source #

FoldableWithIndex i f => FoldableWithIndex i ( Backwards f)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Backwards f a -> m Source #

ifoldMap' :: Monoid m => (i -> a -> m) -> Backwards f a -> m Source #

ifoldr :: (i -> a -> b -> b) -> b -> Backwards f a -> b Source #

ifoldl :: (i -> b -> a -> b) -> b -> Backwards f a -> b Source #

ifoldr' :: (i -> a -> b -> b) -> b -> Backwards f a -> b Source #

ifoldl' :: (i -> b -> a -> b) -> b -> Backwards f a -> b Source #

FoldableWithIndex Void ( Const e :: Type -> Type )
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Void -> a -> m) -> Const e a -> m Source #

ifoldMap' :: Monoid m => ( Void -> a -> m) -> Const e a -> m Source #

ifoldr :: ( Void -> a -> b -> b) -> b -> Const e a -> b Source #

ifoldl :: ( Void -> b -> a -> b) -> b -> Const e a -> b Source #

ifoldr' :: ( Void -> a -> b -> b) -> b -> Const e a -> b Source #

ifoldl' :: ( Void -> b -> a -> b) -> b -> Const e a -> b Source #

FoldableWithIndex Void ( Constant e :: Type -> Type )
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Void -> a -> m) -> Constant e a -> m Source #

ifoldMap' :: Monoid m => ( Void -> a -> m) -> Constant e a -> m Source #

ifoldr :: ( Void -> a -> b -> b) -> b -> Constant e a -> b Source #

ifoldl :: ( Void -> b -> a -> b) -> b -> Constant e a -> b Source #

ifoldr' :: ( Void -> a -> b -> b) -> b -> Constant e a -> b Source #

ifoldl' :: ( Void -> b -> a -> b) -> b -> Constant e a -> b Source #

FoldableWithIndex Void ( K1 i c :: Type -> Type )
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Void -> a -> m) -> K1 i c a -> m Source #

ifoldMap' :: Monoid m => ( Void -> a -> m) -> K1 i c a -> m Source #

ifoldr :: ( Void -> a -> b -> b) -> b -> K1 i c a -> b Source #

ifoldl :: ( Void -> b -> a -> b) -> b -> K1 i c a -> b Source #

ifoldr' :: ( Void -> a -> b -> b) -> b -> K1 i c a -> b Source #

ifoldl' :: ( Void -> b -> a -> b) -> b -> K1 i c a -> b Source #

FoldableWithIndex [ Int ] Tree
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ([ Int ] -> a -> m) -> Tree a -> m Source #

ifoldMap' :: Monoid m => ([ Int ] -> a -> m) -> Tree a -> m Source #

ifoldr :: ([ Int ] -> a -> b -> b) -> b -> Tree a -> b Source #

ifoldl :: ([ Int ] -> b -> a -> b) -> b -> Tree a -> b Source #

ifoldr' :: ([ Int ] -> a -> b -> b) -> b -> Tree a -> b Source #

ifoldl' :: ([ Int ] -> b -> a -> b) -> b -> Tree a -> b Source #

( FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex ( Either i j) ( Sum f g)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Either i j -> a -> m) -> Sum f g a -> m Source #

ifoldMap' :: Monoid m => ( Either i j -> a -> m) -> Sum f g a -> m Source #

ifoldr :: ( Either i j -> a -> b -> b) -> b -> Sum f g a -> b Source #

ifoldl :: ( Either i j -> b -> a -> b) -> b -> Sum f g a -> b Source #

ifoldr' :: ( Either i j -> a -> b -> b) -> b -> Sum f g a -> b Source #

ifoldl' :: ( Either i j -> b -> a -> b) -> b -> Sum f g a -> b Source #

( FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex ( Either i j) ( Product f g)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Either i j -> a -> m) -> Product f g a -> m Source #

ifoldMap' :: Monoid m => ( Either i j -> a -> m) -> Product f g a -> m Source #

ifoldr :: ( Either i j -> a -> b -> b) -> b -> Product f g a -> b Source #

ifoldl :: ( Either i j -> b -> a -> b) -> b -> Product f g a -> b Source #

ifoldr' :: ( Either i j -> a -> b -> b) -> b -> Product f g a -> b Source #

ifoldl' :: ( Either i j -> b -> a -> b) -> b -> Product f g a -> b Source #

( FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex ( Either i j) (f :+: g)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Either i j -> a -> m) -> (f :+: g) a -> m Source #

ifoldMap' :: Monoid m => ( Either i j -> a -> m) -> (f :+: g) a -> m Source #

ifoldr :: ( Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b Source #

ifoldl :: ( Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b Source #

ifoldr' :: ( Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b Source #

ifoldl' :: ( Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b Source #

( FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex ( Either i j) (f :*: g)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ( Either i j -> a -> m) -> (f :*: g) a -> m Source #

ifoldMap' :: Monoid m => ( Either i j -> a -> m) -> (f :*: g) a -> m Source #

ifoldr :: ( Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b Source #

ifoldl :: ( Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b Source #

ifoldr' :: ( Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b Source #

ifoldl' :: ( Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b Source #

( FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) ( Compose f g)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m Source #

ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m Source #

ifoldr :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b Source #

ifoldl :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b Source #

ifoldr' :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b Source #

ifoldl' :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b Source #

( FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (f :.: g)
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m Source #

ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m Source #

ifoldr :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b Source #

ifoldl :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b Source #

ifoldr' :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b Source #

ifoldl' :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b Source #

itraverse_ :: ( FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () Source #

Traverse elements with access to the index i , discarding the results.

When you don't need access to the index then traverse_ is more flexible in what it accepts.

traverse_ l = itraverse . const

ifor_ :: ( FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () Source #

Traverse elements with access to the index i , discarding the results (with the arguments flipped).

ifor_flip itraverse_

When you don't need access to the index then for_ is more flexible in what it accepts.

for_ a ≡ ifor_ a . const

itoList :: FoldableWithIndex i f => f a -> [(i, a)] Source #

Extract the key-value pairs from a structure.

When you don't need access to the indices in the result, then toList is more flexible in what it accepts.

toListmap snd . itoList

Traversable with index

class ( FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type ) | t -> i where Source #

A Traversable with an additional index.

An instance must satisfy a (modified) form of the Traversable laws:

itraverse (const Identity) ≡ Identity
fmap (itraverse f) . itraverse g ≡ getCompose . itraverse (\i -> Compose . fmap (f i) . g i)

Minimal complete definition

Nothing

Methods

itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) Source #

Traverse an indexed container.

itraverseitraverseOf itraversed

Instances

Instances details
TraversableWithIndex Int []
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Int -> a -> f b) -> [a] -> f [b] Source #

TraversableWithIndex Int ZipList
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Int -> a -> f b) -> ZipList a -> f ( ZipList b) Source #

TraversableWithIndex Int NonEmpty
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Int -> a -> f b) -> NonEmpty a -> f ( NonEmpty b) Source #

TraversableWithIndex Int IntMap
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Int -> a -> f b) -> IntMap a -> f ( IntMap b) Source #

TraversableWithIndex Int Seq
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Int -> a -> f b) -> Seq a -> f ( Seq b) Source #

TraversableWithIndex () Maybe
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Maybe a -> f ( Maybe b) Source #

TraversableWithIndex () Par1
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Par1 a -> f ( Par1 b) Source #

TraversableWithIndex () Identity
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Identity a -> f ( Identity b) Source #

TraversableWithIndex k ( Map k)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (k -> a -> f b) -> Map k a -> f ( Map k b) Source #

TraversableWithIndex k ( (,) k)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (k -> a -> f b) -> (k, a) -> f (k, b) Source #

Ix i => TraversableWithIndex i ( Array i)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (i -> a -> f b) -> Array i a -> f ( Array i b) Source #

TraversableWithIndex Void ( V1 :: Type -> Type )
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Void -> a -> f b) -> V1 a -> f ( V1 b) Source #

TraversableWithIndex Void ( U1 :: Type -> Type )
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Void -> a -> f b) -> U1 a -> f ( U1 b) Source #

TraversableWithIndex Void ( Proxy :: Type -> Type )
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Void -> a -> f b) -> Proxy a -> f ( Proxy b) Source #

TraversableWithIndex i f => TraversableWithIndex i ( Reverse f)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Reverse f a -> f0 ( Reverse f b) Source #

TraversableWithIndex i f => TraversableWithIndex i ( Rec1 f)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Rec1 f a -> f0 ( Rec1 f b) Source #

TraversableWithIndex i m => TraversableWithIndex i ( IdentityT m)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (i -> a -> f b) -> IdentityT m a -> f ( IdentityT m b) Source #

TraversableWithIndex i f => TraversableWithIndex i ( Backwards f)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Backwards f a -> f0 ( Backwards f b) Source #

TraversableWithIndex Void ( Const e :: Type -> Type )
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Void -> a -> f b) -> Const e a -> f ( Const e b) Source #

TraversableWithIndex Void ( Constant e :: Type -> Type )
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Void -> a -> f b) -> Constant e a -> f ( Constant e b) Source #

TraversableWithIndex Void ( K1 i c :: Type -> Type )
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ( Void -> a -> f b) -> K1 i c a -> f ( K1 i c b) Source #

TraversableWithIndex [ Int ] Tree
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ([ Int ] -> a -> f b) -> Tree a -> f ( Tree b) Source #

( TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex ( Either i j) ( Sum f g)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ( Either i j -> a -> f0 b) -> Sum f g a -> f0 ( Sum f g b) Source #

( TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex ( Either i j) ( Product f g)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ( Either i j -> a -> f0 b) -> Product f g a -> f0 ( Product f g b) Source #

( TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex ( Either i j) (f :+: g)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ( Either i j -> a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) Source #

( TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex ( Either i j) (f :*: g)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ( Either i j -> a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) Source #

( TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) ( Compose f g)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ((i, j) -> a -> f0 b) -> Compose f g a -> f0 ( Compose f g b) Source #

( TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (f :.: g)
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ((i, j) -> a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) Source #

ifor :: ( TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) Source #

Traverse with an index (and the arguments flipped).

for a ≡ ifor a . const
iforflip itraverse