Safe Haskell | None |
---|---|
Language | Haskell2010 |
This module implements extensible records using closed type famillies.
See Examples.lhs for examples.
Lists of (label,type) pairs are kept sorted thereby ensuring that { x = 0, y = 0 } and { y = 0, x = 0 } have the same type.
In this way we can implement standard type classes such as Show, Eq, Ord and Bounded for open records, given that all the elements of the open record satify the constraint.
Synopsis
- data Label (s :: Symbol ) = Label
- class KnownSymbol (n :: Symbol )
- type family AllUniqueLabels (r :: Row k) :: Constraint where ...
- type WellBehaved ρ = ( Forall ρ Unconstrained1 , AllUniqueLabels ρ)
- data Rec (r :: Row *)
- data Row a
- type Empty = R '[]
- type (≈) a b = a ~ b
- empty :: Rec Empty
- type (.==) (l :: Symbol ) (a :: k) = Extend l a Empty
- (.==) :: KnownSymbol l => Label l -> a -> Rec (l .== a)
- pattern (:==) :: forall l a. KnownSymbol l => Label l -> a -> Rec (l .== a)
- unSingleton :: forall l a. KnownSymbol l => Rec (l .== a) -> ( Label l, a)
- default' :: forall c ρ. ( Forall ρ c, AllUniqueLabels ρ) => ( forall a. c a => a) -> Rec ρ
- defaultA :: forall c f ρ. ( Applicative f, Forall ρ c, AllUniqueLabels ρ) => ( forall a. c a => f a) -> f ( Rec ρ)
- fromLabels :: forall c ρ. ( Forall ρ c, AllUniqueLabels ρ) => ( forall l a. ( KnownSymbol l, c a) => Label l -> a) -> Rec ρ
- fromLabelsA :: forall c f ρ. ( Applicative f, Forall ρ c, AllUniqueLabels ρ) => ( forall l a. ( KnownSymbol l, c a) => Label l -> f a) -> f ( Rec ρ)
- fromLabelsMapA :: forall c f g ρ. ( Applicative f, Forall ρ c, AllUniqueLabels ρ) => ( forall l a. ( KnownSymbol l, c a) => Label l -> f (g a)) -> f ( Rec ( Map g ρ))
- extend :: forall a l r. KnownSymbol l => Label l -> a -> Rec r -> Rec ( Extend l a r)
- type family Extend (l :: Symbol ) (a :: k) (r :: Row k) :: Row k where ...
- class Lacks (l :: Symbol ) (r :: Row *)
- type family (r :: Row k) .\ (l :: Symbol ) :: Constraint where ...
- type family (r :: Row k) .- (s :: Symbol ) :: Row k where ...
- (.-) :: KnownSymbol l => Rec r -> Label l -> Rec (r .- l)
- lazyRemove :: KnownSymbol l => Label l -> Rec r -> Rec (r .- l)
- type family Subset (r1 :: Row k) (r2 :: Row k) :: Constraint where ...
- restrict :: forall r r'. ( FreeForall r, Subset r r') => Rec r' -> Rec r
- split :: forall s r. ( Subset s r, FreeForall s) => Rec r -> ( Rec s, Rec (r .\\ s))
- update :: ( KnownSymbol l, (r .! l) ≈ a) => Label l -> a -> Rec r -> Rec r
- focus :: ( KnownSymbol l, (r' .! l) ≈ b, (r .! l) ≈ a, r' ~ Modify l b r, r ~ Modify l a r', Functor f) => Label l -> (a -> f b) -> Rec r -> f ( Rec r')
- multifocus :: forall u v r f. ( Functor f, Disjoint u r, Disjoint v r) => ( Rec u -> f ( Rec v)) -> Rec (u .+ r) -> f ( Rec (v .+ r))
- type family Modify (l :: Symbol ) (a :: k) (r :: Row k) :: Row k where ...
- rename :: ( KnownSymbol l, KnownSymbol l') => Label l -> Label l' -> Rec r -> Rec ( Rename l l' r)
- type family Rename (l :: Symbol ) (l' :: Symbol ) (r :: Row k) :: Row k where ...
- class (r .! l) ≈ a => HasType l a r
- type family (r :: Row k) .! (t :: Symbol ) :: k where ...
- (.!) :: KnownSymbol l => Rec r -> Label l -> r .! l
- type family (l :: Row k) .+ (r :: Row k) :: Row k where ...
- (.+) :: forall l r. FreeForall l => Rec l -> Rec r -> Rec (l .+ r)
- type Disjoint l r = ( WellBehaved l, WellBehaved r, Subset l (l .+ r), Subset r (l .+ r), ((l .+ r) .\\ l) ≈ r, ((l .+ r) .\\ r) ≈ l)
- pattern (:+) :: forall l r. Disjoint l r => Rec l -> Rec r -> Rec (l .+ r)
- type family (l :: Row k) .// (r :: Row k) where ...
- (.//) :: Rec r -> Rec r' -> Rec (r .// r')
- curryRec :: forall l t r x. KnownSymbol l => Label l -> ( Rec ((l .== t) .+ r) -> x) -> t -> Rec r -> x
- (.$) :: ( KnownSymbol l, (r' .! l) ≈ t) => ( Rec ((l .== t) .+ r) -> x) -> ( Label l, Rec r') -> Rec r -> x
- fromNative :: FromNative t => t -> Rec ( NativeRow t)
- toNative :: ToNative t => Rec ( NativeRow t) -> t
- toNativeGeneral :: ToNativeGeneral t ρ => Rec ρ -> t
- type FromNative t = ( Generic t, FromNativeG ( Rep t))
- type ToNative t = ( Generic t, ToNativeG ( Rep t))
- type ToNativeGeneral t ρ = ( Generic t, ToNativeGeneralG ( Rep t) ρ)
- type family NativeRow t where ...
- toDynamicMap :: Forall r Typeable => Rec r -> HashMap Text Dynamic
- fromDynamicMap :: ( AllUniqueLabels r, Forall r Typeable ) => HashMap Text Dynamic -> Maybe ( Rec r)
- type family Map (f :: a -> b) (r :: Row a) :: Row b where ...
- map :: forall c f r. Forall r c => ( forall a. c a => a -> f a) -> Rec r -> Rec ( Map f r)
- map' :: forall f r. FreeForall r => ( forall a. a -> f a) -> Rec r -> Rec ( Map f r)
- mapF :: forall k c g (ϕ :: Row (k -> *)) (ρ :: Row k). BiForall ϕ ρ c => ( forall h a. c h a => h a -> h (g a)) -> Rec ( Ap ϕ ρ) -> Rec ( Ap ϕ ( Map g ρ))
- transform :: forall c r f g. Forall r c => ( forall a. c a => f a -> g a) -> Rec ( Map f r) -> Rec ( Map g r)
- transform' :: forall r f g. FreeForall r => ( forall a. f a -> g a) -> Rec ( Map f r) -> Rec ( Map g r)
- zipTransform :: forall c r f g h. Forall r c => ( forall a. c a => f a -> g a -> h a) -> Rec ( Map f r) -> Rec ( Map g r) -> Rec ( Map h r)
- zipTransform' :: forall r f g h. FreeForall r => ( forall a. f a -> g a -> h a) -> Rec ( Map f r) -> Rec ( Map g r) -> Rec ( Map h r)
- class BiForall (r1 :: Row k1) (r2 :: Row k2) (c :: k1 -> k2 -> Constraint )
- class Forall (r :: Row k) (c :: k -> Constraint )
- erase :: forall c ρ b. Forall ρ c => ( forall a. c a => a -> b) -> Rec ρ -> [b]
- eraseWithLabels :: forall c ρ s b. ( Forall ρ c, IsString s) => ( forall a. c a => a -> b) -> Rec ρ -> [(s, b)]
- eraseZip :: forall c ρ b. Forall ρ c => ( forall a. c a => a -> a -> b) -> Rec ρ -> Rec ρ -> [b]
- eraseToHashMap :: forall c r s b. ( IsString s, Eq s, Hashable s, Forall r c) => ( forall a. c a => a -> b) -> Rec r -> HashMap s b
- type family Zip (r1 :: Row *) (r2 :: Row *) where ...
- zip :: forall r1 r2. FreeBiForall r1 r2 => Rec r1 -> Rec r2 -> Rec ( Zip r1 r2)
- traverse :: forall c f r. ( Forall r c, Applicative f) => ( forall a. c a => a -> f a) -> Rec r -> f ( Rec r)
- traverseMap :: forall c f g h r. ( Forall r c, Applicative f) => ( forall a. c a => g a -> f (h a)) -> Rec ( Map g r) -> f ( Rec ( Map h r))
- sequence :: forall f r. ( Applicative f, FreeForall r) => Rec ( Map f r) -> f ( Rec r)
- sequence' :: forall f r c. ( Forall r c, Applicative f) => Rec ( Map f r) -> f ( Rec r)
- distribute :: forall f r. ( FreeForall r, Functor f) => f ( Rec r) -> Rec ( Map f r)
- compose :: forall f g r. FreeForall r => Rec ( Map f ( Map g r)) -> Rec ( Map ( Compose f g) r)
- uncompose :: forall f g r. FreeForall r => Rec ( Map ( Compose f g) r) -> Rec ( Map f ( Map g r))
- compose' :: forall c f g r. Forall r c => Rec ( Map f ( Map g r)) -> Rec ( Map ( Compose f g) r)
- uncompose' :: forall c f g r. Forall r c => Rec ( Map ( Compose f g) r) -> Rec ( Map f ( Map g r))
- labels :: forall ρ c s. ( IsString s, Forall ρ c) => [s]
- labels' :: forall ρ s. ( IsString s, Forall ρ Unconstrained1 ) => [s]
- coerceRec :: forall r1 r2. BiForall r1 r2 Coercible => Rec r1 -> Rec r2
Types and constraints
data Label (s :: Symbol ) Source #
A label
class KnownSymbol (n :: Symbol ) Source #
This class gives the string associated with a type-level symbol. There are instances of the class for every concrete literal: "hello", etc.
Since: base-4.7.0.0
symbolSing
type family AllUniqueLabels (r :: Row k) :: Constraint where ... Source #
Are all of the labels in this Row unique?
AllUniqueLabels ( R r) = AllUniqueLabelsR r |
type WellBehaved ρ = ( Forall ρ Unconstrained1 , AllUniqueLabels ρ) Source #
A convenient way to provide common, easy constraints
data Rec (r :: Row *) Source #
A record with row r.
Instances
( KnownSymbol name, (r .! name) ≈ a, r ~ Modify name a r) => HasField' name ( Rec r) a Source # | |
( KnownSymbol name, (r' .! name) ≈ b, (r .! name) ≈ a, r' ~ Modify name b r, r ~ Modify name a r') => HasField name ( Rec r) ( Rec r') a b Source # |
Every field in a row-types based record has a
|
( Forall r Bounded , AllUniqueLabels r) => Bounded ( Rec r) Source # | |
Forall r Eq => Eq ( Rec r) Source # | |
( Forall r Eq , Forall r Ord ) => Ord ( Rec r) Source # | |
Defined in Data.Row.Records |
|
Forall r Show => Show ( Rec r) Source # | |
GenericRec r => Generic ( Rec r) Source # | |
Forall r NFData => NFData ( Rec r) Source # | |
Defined in Data.Row.Records |
|
type Rep ( Rec r) Source # | |
Defined in Data.Row.Records |
The kind of rows. This type is only used as a datakind. A row is a typelevel entity telling us which symbols are associated with which types.
Construction
type (.==) (l :: Symbol ) (a :: k) = Extend l a Empty infix 7 Source #
A type level way to create a singleton Row.
pattern (:==) :: forall l a. KnownSymbol l => Label l -> a -> Rec (l .== a) infix 7 Source #
A pattern for the singleton record; can be used to both destruct a record when in a pattern position or construct one in an expression position.
unSingleton :: forall l a. KnownSymbol l => Rec (l .== a) -> ( Label l, a) Source #
Turns a singleton record into a pair of the label and value.
default' :: forall c ρ. ( Forall ρ c, AllUniqueLabels ρ) => ( forall a. c a => a) -> Rec ρ Source #
Initialize a record with a default value at each label.
defaultA :: forall c f ρ. ( Applicative f, Forall ρ c, AllUniqueLabels ρ) => ( forall a. c a => f a) -> f ( Rec ρ) Source #
Initialize a record with a default value at each label; works over an
Applicative
.
fromLabels :: forall c ρ. ( Forall ρ c, AllUniqueLabels ρ) => ( forall l a. ( KnownSymbol l, c a) => Label l -> a) -> Rec ρ Source #
Initialize a record, where each value is determined by the given function over the label at that value.
fromLabelsA :: forall c f ρ. ( Applicative f, Forall ρ c, AllUniqueLabels ρ) => ( forall l a. ( KnownSymbol l, c a) => Label l -> f a) -> f ( Rec ρ) Source #
Initialize a record, where each value is determined by the given function over
the label at that value. This function works over an
Applicative
.
fromLabelsMapA :: forall c f g ρ. ( Applicative f, Forall ρ c, AllUniqueLabels ρ) => ( forall l a. ( KnownSymbol l, c a) => Label l -> f (g a)) -> f ( Rec ( Map g ρ)) Source #
Initialize a record over a
Map
.
Extension
extend :: forall a l r. KnownSymbol l => Label l -> a -> Rec r -> Rec ( Extend l a r) Source #
Record extension. The row may already contain the label,
in which case the origin value can be obtained after restriction (
.-
) with
the label.
type family Extend (l :: Symbol ) (a :: k) (r :: Row k) :: Row k where ... Source #
Type level Row extension
class Lacks (l :: Symbol ) (r :: Row *) Source #
Alias for
.\
. It is a class rather than an alias, so that
it can be partially applied.
Instances
r .\ l => Lacks l r Source # | |
Defined in Data.Row.Internal |
type family (r :: Row k) .\ (l :: Symbol ) :: Constraint where ... infixl 4 Source #
Does the row lack (i.e. it does not have) the specified label?
( R '[]) .\ l = Unconstrained | |
( R r) .\ l = LacksR l r r |
Restriction
type family (r :: Row k) .- (s :: Symbol ) :: Row k where ... infixl 6 Source #
Type level Row element removal
(.-) :: KnownSymbol l => Rec r -> Label l -> Rec (r .- l) infixl 6 Source #
Record restriction. Remove the label l from the record.
lazyRemove :: KnownSymbol l => Label l -> Rec r -> Rec (r .- l) Source #
Removes a label from the record but does not remove the underlying value.
This is faster than regular record removal (
.-
), but it has two downsides:
-
It may incur a performance penalty during a future merge operation (
.+
), and - It will keep the reference to the value alive, meaning that it will not get garbage collected.
Thus, it's great when one knows ahead of time that no future merges will happen
and that the whole record will be GC'd soon, for instance, during the catamorphism
function of
metamorph
.
type family Subset (r1 :: Row k) (r2 :: Row k) :: Constraint where ... Source #
Is the first row a subset of the second? Or, does the second row contain every binding that the first one does?
restrict :: forall r r'. ( FreeForall r, Subset r r') => Rec r' -> Rec r Source #
Arbitrary record restriction. Turn a record into a subset of itself.
split :: forall s r. ( Subset s r, FreeForall s) => Rec r -> ( Rec s, Rec (r .\\ s)) Source #
Split a record into two sub-records.
Modification
update :: ( KnownSymbol l, (r .! l) ≈ a) => Label l -> a -> Rec r -> Rec r Source #
Update the value associated with the label.
focus :: ( KnownSymbol l, (r' .! l) ≈ b, (r .! l) ≈ a, r' ~ Modify l b r, r ~ Modify l a r', Functor f) => Label l -> (a -> f b) -> Rec r -> f ( Rec r') Source #
Focus on the value associated with the label.
multifocus :: forall u v r f. ( Functor f, Disjoint u r, Disjoint v r) => ( Rec u -> f ( Rec v)) -> Rec (u .+ r) -> f ( Rec (v .+ r)) Source #
Focus on a sub-record
type family Modify (l :: Symbol ) (a :: k) (r :: Row k) :: Row k where ... Source #
Type level Row modification
rename :: ( KnownSymbol l, KnownSymbol l') => Label l -> Label l' -> Rec r -> Rec ( Rename l l' r) Source #
Rename a label.
type family Rename (l :: Symbol ) (l' :: Symbol ) (r :: Row k) :: Row k where ... Source #
Type level row renaming
Query
class (r .! l) ≈ a => HasType l a r Source #
Alias for
(r .! l) ≈ a
. It is a class rather than an alias, so that
it can be partially applied.
type family (r :: Row k) .! (t :: Symbol ) :: k where ... infixl 5 Source #
Type level label fetching
Combine
Disjoint union
(.+) :: forall l r. FreeForall l => Rec l -> Rec r -> Rec (l .+ r) infixl 6 Source #
Record disjoint union (commutative)
type Disjoint l r = ( WellBehaved l, WellBehaved r, Subset l (l .+ r), Subset r (l .+ r), ((l .+ r) .\\ l) ≈ r, ((l .+ r) .\\ r) ≈ l) Source #
A type synonym for disjointness.
pattern (:+) :: forall l r. Disjoint l r => Rec l -> Rec r -> Rec (l .+ r) infixl 6 Source #
A pattern version of record union, for use in pattern matching.
Overwrite
type family (l :: Row k) .// (r :: Row k) where ... infixl 6 Source #
The overwriting union, where the left row overwrites the types of the right row where the labels overlap.
(.//) :: Rec r -> Rec r' -> Rec (r .// r') infixl 6 Source #
Record overwrite.
The operation
r .// r'
creates a new record such that:
-
Any label that is in both
r
andr'
is in the resulting record with the type and value given by the fields inr
, -
Any label that is only found in
r
is in the resulting record. -
Any label that is only found in
r'
is in the resulting record.
This can be thought of as
r
"overwriting"
r'
.
Application with functions
curryRec :: forall l t r x. KnownSymbol l => Label l -> ( Rec ((l .== t) .+ r) -> x) -> t -> Rec r -> x Source #
Kind of like
curry
for functions over records.
(.$) :: ( KnownSymbol l, (r' .! l) ≈ t) => ( Rec ((l .== t) .+ r) -> x) -> ( Label l, Rec r') -> Rec r -> x infixl 2 Source #
This function allows one to do partial application on a function of a record. Note that this also means that arguments can be supplied in arbitrary order. For instance, if one had a function like
xtheny r = (r .! #x) <> (r .! #y)
and a record like
greeting = #x .== "hello " .+ #y .== "world!"
Then all of the following would be possible:
>>>
xtheny greeting
"hello world!"
>>>
xtheny .$ (#x, greeting) .$ (#y, greeting) $ empty
"hello world!"
>>>
xtheny .$ (#y, greeting) .$ (#x, greeting) $ empty
"hello world!"
>>>
xtheny .$ (#y, greeting) .$ (#x, #x .== "Goodbye ") $ empty
"Goodbye world!"
Native Conversion
The
toNative
and
fromNative
functions allow one to convert between
Rec
s and regular Haskell data types ("native" types) that have a single constructor and any
number of named fields with the same names and types as the
Rec
. As expected,
they compose to form the identity. Alternatively, one may use
toNativeGeneral
,
which allows fields to be dropped when a record has excess fields compared
to the native type. Because of this,
toNativeGeneral
requires a type
application (although
fromNative
does not). The only requirement is that
the native Haskell data type be an instance of
Generic
.
For example, consider the following simple data type:
>>>
data Person = Person { name :: String, age :: Int} deriving (Generic, Show)
Then, we have the following:
>>>
toNative @Person $ #name .== "Alice" .+ #age .== 7 .+ #hasDog .== True
Person {name = "Alice", age = 7}>>>
fromNative $ Person "Bob" 9
{ age=9, name="Bob" }
fromNative :: FromNative t => t -> Rec ( NativeRow t) Source #
Convert a Haskell record to a row-types Rec.
toNative :: ToNative t => Rec ( NativeRow t) -> t Source #
Convert a record to an exactly matching native Haskell type.
toNativeGeneral :: ToNativeGeneral t ρ => Rec ρ -> t Source #
Convert a record to a native Haskell type.
type FromNative t = ( Generic t, FromNativeG ( Rep t)) Source #
type ToNativeGeneral t ρ = ( Generic t, ToNativeGeneralG ( Rep t) ρ) Source #
Dynamic Conversion
fromDynamicMap :: ( AllUniqueLabels r, Forall r Typeable ) => HashMap Text Dynamic -> Maybe ( Rec r) Source #
Row operations
Map
type family Map (f :: a -> b) (r :: Row a) :: Row b where ... Source #
Map a type level function over a Row.
map :: forall c f r. Forall r c => ( forall a. c a => a -> f a) -> Rec r -> Rec ( Map f r) Source #
A function to map over a record given a constraint.
map' :: forall f r. FreeForall r => ( forall a. a -> f a) -> Rec r -> Rec ( Map f r) Source #
A function to map over a record given no constraint.
mapF :: forall k c g (ϕ :: Row (k -> *)) (ρ :: Row k). BiForall ϕ ρ c => ( forall h a. c h a => h a -> h (g a)) -> Rec ( Ap ϕ ρ) -> Rec ( Ap ϕ ( Map g ρ)) Source #
A function to map over a Ap record given constraints.
transform :: forall c r f g. Forall r c => ( forall a. c a => f a -> g a) -> Rec ( Map f r) -> Rec ( Map g r) Source #
Lifts a natural transformation over a record. In other words, it acts as a
record transformer to convert a record of
f a
values to a record of
g a
values. If no constraint is needed, instantiate the first type argument with
Unconstrained1
or use
transform'
.
transform' :: forall r f g. FreeForall r => ( forall a. f a -> g a) -> Rec ( Map f r) -> Rec ( Map g r) Source #
A version of
transform
for when there is no constraint.
zipTransform :: forall c r f g h. Forall r c => ( forall a. c a => f a -> g a -> h a) -> Rec ( Map f r) -> Rec ( Map g r) -> Rec ( Map h r) Source #
Zip together two records that are the same up to the type being mapped over them, combining their constituent fields with the given function.
zipTransform' :: forall r f g h. FreeForall r => ( forall a. f a -> g a -> h a) -> Rec ( Map f r) -> Rec ( Map g r) -> Rec ( Map h r) Source #
A version of
zipTransform
for when there is no constraint.
Fold
class BiForall (r1 :: Row k1) (r2 :: Row k2) (c :: k1 -> k2 -> Constraint ) Source #
Any structure over two rows in which the elements of each row satisfy some constraints can be metamorphized into another structure over both of the rows.
Instances
( KnownSymbol ℓ, c τ1 τ2, BiForall (' R ρ1) (' R ρ2) c, FrontExtends ℓ τ1 (' R ρ1), FrontExtends ℓ τ2 (' R ρ2), AllUniqueLabels ( Extend ℓ τ1 (' R ρ1)), AllUniqueLabels ( Extend ℓ τ2 (' R ρ2))) => BiForall (' R ((ℓ :-> τ1) ': ρ1) :: Row k1) (' R ((ℓ :-> τ2) ': ρ2) :: Row k2) (c :: k1 -> k2 -> Constraint ) Source # | |
Defined in Data.Row.Internal biMetamorph :: forall p f g h. Bifunctor p => Proxy ( Proxy h, Proxy p) -> (f Empty Empty -> g Empty Empty ) -> ( forall (ℓ0 :: Symbol ) (τ10 :: k10) (τ20 :: k20) (ρ10 :: Row k10) (ρ20 :: Row k20). ( KnownSymbol ℓ0, c τ10 τ20, HasType ℓ0 τ10 ρ10, HasType ℓ0 τ20 ρ20) => Label ℓ0 -> f ρ10 ρ20 -> p (f (ρ10 .- ℓ0) (ρ20 .- ℓ0)) (h τ10 τ20)) -> ( forall (ℓ1 :: Symbol ) (τ11 :: k10) (τ21 :: k20) (ρ11 :: Row k10) (ρ21 :: Row k20). ( KnownSymbol ℓ1, c τ11 τ21, FrontExtends ℓ1 τ11 ρ11, FrontExtends ℓ1 τ21 ρ21, AllUniqueLabels ( Extend ℓ1 τ11 ρ11), AllUniqueLabels ( Extend ℓ1 τ21 ρ21)) => Label ℓ1 -> p (g ρ11 ρ21) (h τ11 τ21) -> g ( Extend ℓ1 τ11 ρ11) ( Extend ℓ1 τ21 ρ21)) -> f (' R ((ℓ :-> τ1) ': ρ1)) (' R ((ℓ :-> τ2) ': ρ2)) -> g (' R ((ℓ :-> τ1) ': ρ1)) (' R ((ℓ :-> τ2) ': ρ2)) Source # |
|
BiForall (' R ('[] :: [ LT k1]) :: Row k1) (' R ('[] :: [ LT k2]) :: Row k2) (c1 :: k1 -> k2 -> Constraint ) Source # | |
Defined in Data.Row.Internal biMetamorph :: forall p f g h. Bifunctor p => Proxy ( Proxy h, Proxy p) -> (f Empty Empty -> g Empty Empty ) -> ( forall (ℓ :: Symbol ) (τ1 :: k10) (τ2 :: k20) (ρ1 :: Row k10) (ρ2 :: Row k20). ( KnownSymbol ℓ, c1 τ1 τ2, HasType ℓ τ1 ρ1, HasType ℓ τ2 ρ2) => Label ℓ -> f ρ1 ρ2 -> p (f (ρ1 .- ℓ) (ρ2 .- ℓ)) (h τ1 τ2)) -> ( forall (ℓ :: Symbol ) (τ1 :: k10) (τ2 :: k20) (ρ1 :: Row k10) (ρ2 :: Row k20). ( KnownSymbol ℓ, c1 τ1 τ2, FrontExtends ℓ τ1 ρ1, FrontExtends ℓ τ2 ρ2, AllUniqueLabels ( Extend ℓ τ1 ρ1), AllUniqueLabels ( Extend ℓ τ2 ρ2)) => Label ℓ -> p (g ρ1 ρ2) (h τ1 τ2) -> g ( Extend ℓ τ1 ρ1) ( Extend ℓ τ2 ρ2)) -> f (' R '[]) (' R '[]) -> g (' R '[]) (' R '[]) Source # |
class Forall (r :: Row k) (c :: k -> Constraint ) Source #
Any structure over a row in which every element is similarly constrained can be metamorphized into another structure over the same row.
Instances
( KnownSymbol ℓ, c τ, Forall (' R ρ) c, FrontExtends ℓ τ (' R ρ), AllUniqueLabels ( Extend ℓ τ (' R ρ))) => Forall (' R ((ℓ :-> τ) ': ρ) :: Row k) (c :: k -> Constraint ) Source # | |
Defined in Data.Row.Internal metamorph :: forall p f g h. Bifunctor p => Proxy ( Proxy h, Proxy p) -> (f Empty -> g Empty ) -> ( forall (ℓ0 :: Symbol ) (τ0 :: k0) (ρ0 :: Row k0). ( KnownSymbol ℓ0, c τ0, HasType ℓ0 τ0 ρ0) => Label ℓ0 -> f ρ0 -> p (f (ρ0 .- ℓ0)) (h τ0)) -> ( forall (ℓ1 :: Symbol ) (τ1 :: k0) (ρ1 :: Row k0). ( KnownSymbol ℓ1, c τ1, FrontExtends ℓ1 τ1 ρ1, AllUniqueLabels ( Extend ℓ1 τ1 ρ1)) => Label ℓ1 -> p (g ρ1) (h τ1) -> g ( Extend ℓ1 τ1 ρ1)) -> f (' R ((ℓ :-> τ) ': ρ)) -> g (' R ((ℓ :-> τ) ': ρ)) Source # |
|
Forall (' R ('[] :: [ LT k]) :: Row k) (c :: k -> Constraint ) Source # | |
Defined in Data.Row.Internal metamorph :: forall p f g h. Bifunctor p => Proxy ( Proxy h, Proxy p) -> (f Empty -> g Empty ) -> ( forall (ℓ :: Symbol ) (τ :: k0) (ρ :: Row k0). ( KnownSymbol ℓ, c τ, HasType ℓ τ ρ) => Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ)) -> ( forall (ℓ :: Symbol ) (τ :: k0) (ρ :: Row k0). ( KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ, AllUniqueLabels ( Extend ℓ τ ρ)) => Label ℓ -> p (g ρ) (h τ) -> g ( Extend ℓ τ ρ)) -> f (' R '[]) -> g (' R '[]) Source # |
erase :: forall c ρ b. Forall ρ c => ( forall a. c a => a -> b) -> Rec ρ -> [b] Source #
A standard fold
eraseWithLabels :: forall c ρ s b. ( Forall ρ c, IsString s) => ( forall a. c a => a -> b) -> Rec ρ -> [(s, b)] Source #
A fold with labels
eraseZip :: forall c ρ b. Forall ρ c => ( forall a. c a => a -> a -> b) -> Rec ρ -> Rec ρ -> [b] Source #
A fold over two row type structures at once
eraseToHashMap :: forall c r s b. ( IsString s, Eq s, Hashable s, Forall r c) => ( forall a. c a => a -> b) -> Rec r -> HashMap s b Source #
Turns a record into a
HashMap
from values representing the labels to
the values of the record.
Zip
type family Zip (r1 :: Row *) (r2 :: Row *) where ... Source #
Zips two rows together to create a Row of the pairs. The two rows must have the same set of labels.
zip :: forall r1 r2. FreeBiForall r1 r2 => Rec r1 -> Rec r2 -> Rec ( Zip r1 r2) Source #
Zips together two records that have the same set of labels.
Applicative-like functions
traverse :: forall c f r. ( Forall r c, Applicative f) => ( forall a. c a => a -> f a) -> Rec r -> f ( Rec r) Source #
Traverse a function over a record. Note that the fields of the record will be accessed in lexicographic order by the labels.
traverseMap :: forall c f g h r. ( Forall r c, Applicative f) => ( forall a. c a => g a -> f (h a)) -> Rec ( Map g r) -> f ( Rec ( Map h r)) Source #
Traverse a function over a Mapped record. Note that the fields of the record will be accessed in lexicographic order by the labels.
sequence :: forall f r. ( Applicative f, FreeForall r) => Rec ( Map f r) -> f ( Rec r) Source #
Applicative sequencing over a record.
distribute :: forall f r. ( FreeForall r, Functor f) => f ( Rec r) -> Rec ( Map f r) Source #
This function acts as the inversion of
sequence
, allowing one to move a
functor level into a record.
Compose
We can easily convert between mapping two functors over the types of a row and mapping the composition of the two functors. The following two functions perform this composition with the gaurantee that:
>>>
compose . uncompose = id
>>>
uncompose . compose = id
compose :: forall f g r. FreeForall r => Rec ( Map f ( Map g r)) -> Rec ( Map ( Compose f g) r) Source #
Convert from a record where two functors have been mapped over the types to one where the composition of the two functors is mapped over the types.
uncompose :: forall f g r. FreeForall r => Rec ( Map ( Compose f g) r) -> Rec ( Map f ( Map g r)) Source #
Convert from a record where the composition of two functors have been mapped over the types to one where the two functors are mapped individually one at a time over the types.
compose' :: forall c f g r. Forall r c => Rec ( Map f ( Map g r)) -> Rec ( Map ( Compose f g) r) Source #
uncompose' :: forall c f g r. Forall r c => Rec ( Map ( Compose f g) r) -> Rec ( Map f ( Map g r)) Source #
Labels
labels :: forall ρ c s. ( IsString s, Forall ρ c) => [s] Source #
Return a list of the labels in a row type.
labels' :: forall ρ s. ( IsString s, Forall ρ Unconstrained1 ) => [s] Source #
Return a list of the labels in a row type and is specialized to the
Unconstrained1
constraint.
Coerce
coerceRec :: forall r1 r2. BiForall r1 r2 Coercible => Rec r1 -> Rec r2 Source #
Coerce a record to a coercible representation. The
BiForall
in the context
indicates that the type of every field in
r1
can be coerced to the type of
the corresponding fields in
r2
.
Internally, this is implemented just with
unsafeCoerce
, but we provide the
following implementation as a proof:
newtype ConstR a b = ConstR (Rec a) newtype FlipConstR a b = FlipConstR { unFlipConstR :: Rec b } coerceRec :: forall r1 r2. BiForall r1 r2 Coercible => Rec r1 -> Rec r2 coerceRec = unFlipConstR . biMetamorph @_ @_ @r1 @r2 @Coercible @(,) @ConstR @FlipConstR @Const Proxy doNil doUncons doCons . ConstR where doNil _ = FlipConstR empty doUncons l (ConstR r) = bimap ConstR Const $ lazyUncons l r doCons :: forall ℓ τ1 τ2 ρ1 ρ2. (KnownSymbol ℓ, Coercible τ1 τ2) => Label ℓ -> (FlipConstR ρ1 ρ2, Const τ1 τ2) -> FlipConstR (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2) doCons l (FlipConstR r, Const v) = FlipConstR $ extend l (coerce @τ1 @τ2 v) r