free-5.1.10: Monads for free
Safe Haskell Safe
Language Haskell2010

Control.Monad.Trans.Free.Ap

Description

Given an applicative, the free monad transformer.

Synopsis

The base functor

data FreeF f a b Source #

The base functor for a free monad.

Constructors

Pure a
Free (f b)

Instances

Instances details
Traversable f => Bitraversable ( FreeF f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> FreeF f a b -> f0 ( FreeF f c d) Source #

Foldable f => Bifoldable ( FreeF f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

bifold :: Monoid m => FreeF f m m -> m Source #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> FreeF f a b -> m Source #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> FreeF f a b -> c Source #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> FreeF f a b -> c Source #

Functor f => Bifunctor ( FreeF f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

bimap :: (a -> b) -> (c -> d) -> FreeF f a c -> FreeF f b d Source #

first :: (a -> b) -> FreeF f a c -> FreeF f b c Source #

second :: (b -> c) -> FreeF f a b -> FreeF f a c Source #

Eq1 f => Eq2 ( FreeF f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftEq2 :: (a -> b -> Bool ) -> (c -> d -> Bool ) -> FreeF f a c -> FreeF f b d -> Bool Source #

Ord1 f => Ord2 ( FreeF f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftCompare2 :: (a -> b -> Ordering ) -> (c -> d -> Ordering ) -> FreeF f a c -> FreeF f b d -> Ordering Source #

Read1 f => Read2 ( FreeF f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Show1 f => Show2 ( FreeF f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftShowsPrec2 :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> ( Int -> b -> ShowS ) -> ([b] -> ShowS ) -> Int -> FreeF f a b -> ShowS Source #

liftShowList2 :: ( Int -> a -> ShowS ) -> ([a] -> ShowS ) -> ( Int -> b -> ShowS ) -> ([b] -> ShowS ) -> [ FreeF f a b] -> ShowS Source #

Generic1 ( FreeF f a :: Type -> Type ) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Associated Types

type Rep1 ( FreeF f a) :: k -> Type Source #

Methods

from1 :: forall (a0 :: k). FreeF f a a0 -> Rep1 ( FreeF f a) a0 Source #

to1 :: forall (a0 :: k). Rep1 ( FreeF f a) a0 -> FreeF f a a0 Source #

Functor f => Functor ( FreeF f a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fmap :: (a0 -> b) -> FreeF f a a0 -> FreeF f a b Source #

(<$) :: a0 -> FreeF f a b -> FreeF f a a0 Source #

Foldable f => Foldable ( FreeF f a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fold :: Monoid m => FreeF f a m -> m Source #

foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m Source #

foldMap' :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m Source #

foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b Source #

foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b Source #

foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b Source #

foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b Source #

foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 Source #

foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 Source #

toList :: FreeF f a a0 -> [a0] Source #

null :: FreeF f a a0 -> Bool Source #

length :: FreeF f a a0 -> Int Source #

elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool Source #

maximum :: Ord a0 => FreeF f a a0 -> a0 Source #

minimum :: Ord a0 => FreeF f a a0 -> a0 Source #

sum :: Num a0 => FreeF f a a0 -> a0 Source #

product :: Num a0 => FreeF f a a0 -> a0 Source #

Traversable f => Traversable ( FreeF f a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> FreeF f a a0 -> f0 ( FreeF f a b) Source #

sequenceA :: Applicative f0 => FreeF f a (f0 a0) -> f0 ( FreeF f a a0) Source #

mapM :: Monad m => (a0 -> m b) -> FreeF f a a0 -> m ( FreeF f a b) Source #

sequence :: Monad m => FreeF f a (m a0) -> m ( FreeF f a a0) Source #

( Eq1 f, Eq a) => Eq1 ( FreeF f a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftEq :: (a0 -> b -> Bool ) -> FreeF f a a0 -> FreeF f a b -> Bool Source #

( Ord1 f, Ord a) => Ord1 ( FreeF f a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftCompare :: (a0 -> b -> Ordering ) -> FreeF f a a0 -> FreeF f a b -> Ordering Source #

( Read1 f, Read a) => Read1 ( FreeF f a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Show1 f, Show a) => Show1 ( FreeF f a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftShowsPrec :: ( Int -> a0 -> ShowS ) -> ([a0] -> ShowS ) -> Int -> FreeF f a a0 -> ShowS Source #

liftShowList :: ( Int -> a0 -> ShowS ) -> ([a0] -> ShowS ) -> [ FreeF f a a0] -> ShowS Source #

( Eq a, Eq (f b)) => Eq ( FreeF f a b) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Ord a, Ord (f b)) => Ord ( FreeF f a b) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Read a, Read (f b)) => Read ( FreeF f a b) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Show a, Show (f b)) => Show ( FreeF f a b) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Generic ( FreeF f a b) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Associated Types

type Rep ( FreeF f a b) :: Type -> Type Source #

type Rep1 ( FreeF f a :: Type -> Type ) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

type Rep ( FreeF f a b) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

The free monad transformer

newtype FreeT f m a Source #

The "free monad transformer" for an applicative f

Constructors

FreeT

Fields

Instances

Instances details
( Applicative f, Applicative m, MonadWriter w m) => MonadWriter w ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

writer :: (a, w) -> FreeT f m a Source #

tell :: w -> FreeT f m () Source #

listen :: FreeT f m a -> FreeT f m (a, w) Source #

pass :: FreeT f m (a, w -> w) -> FreeT f m a Source #

( Applicative f, Applicative m, MonadState s m) => MonadState s ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, MonadReader r m) => MonadReader r ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

ask :: FreeT f m r Source #

local :: (r -> r) -> FreeT f m a -> FreeT f m a Source #

reader :: (r -> a) -> FreeT f m a Source #

( Applicative f, Applicative m, MonadError e m) => MonadError e ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, Monad m) => MonadFree f ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

wrap :: f ( FreeT f m a) -> FreeT f m a Source #

Applicative f => MonadTrans ( FreeT f) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

lift :: Monad m => m a -> FreeT f m a Source #

( Applicative f, Applicative m, Monad m) => Monad ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Functor f, Monad m) => Functor ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fmap :: (a -> b) -> FreeT f m a -> FreeT f m b Source #

(<$) :: a -> FreeT f m b -> FreeT f m a Source #

( Applicative f, Applicative m, MonadFail m) => MonadFail ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, Monad m) => Applicative ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

pure :: a -> FreeT f m a Source #

(<*>) :: FreeT f m (a -> b) -> FreeT f m a -> FreeT f m b Source #

liftA2 :: (a -> b -> c) -> FreeT f m a -> FreeT f m b -> FreeT f m c Source #

(*>) :: FreeT f m a -> FreeT f m b -> FreeT f m b Source #

(<*) :: FreeT f m a -> FreeT f m b -> FreeT f m a Source #

( Foldable m, Foldable f) => Foldable ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fold :: Monoid m0 => FreeT f m m0 -> m0 Source #

foldMap :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 Source #

foldMap' :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 Source #

foldr :: (a -> b -> b) -> b -> FreeT f m a -> b Source #

foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b Source #

foldl :: (b -> a -> b) -> b -> FreeT f m a -> b Source #

foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b Source #

foldr1 :: (a -> a -> a) -> FreeT f m a -> a Source #

foldl1 :: (a -> a -> a) -> FreeT f m a -> a Source #

toList :: FreeT f m a -> [a] Source #

null :: FreeT f m a -> Bool Source #

length :: FreeT f m a -> Int Source #

elem :: Eq a => a -> FreeT f m a -> Bool Source #

maximum :: Ord a => FreeT f m a -> a Source #

minimum :: Ord a => FreeT f m a -> a Source #

sum :: Num a => FreeT f m a -> a Source #

product :: Num a => FreeT f m a -> a Source #

( Monad m, Traversable m, Traversable f) => Traversable ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

traverse :: Applicative f0 => (a -> f0 b) -> FreeT f m a -> f0 ( FreeT f m b) Source #

sequenceA :: Applicative f0 => FreeT f m (f0 a) -> f0 ( FreeT f m a) Source #

mapM :: Monad m0 => (a -> m0 b) -> FreeT f m a -> m0 ( FreeT f m b) Source #

sequence :: Monad m0 => FreeT f m (m0 a) -> m0 ( FreeT f m a) Source #

( Eq1 f, Eq1 m) => Eq1 ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftEq :: (a -> b -> Bool ) -> FreeT f m a -> FreeT f m b -> Bool Source #

( Ord1 f, Ord1 m) => Ord1 ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftCompare :: (a -> b -> Ordering ) -> FreeT f m a -> FreeT f m b -> Ordering Source #

( Read1 f, Read1 m) => Read1 ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Show1 f, Show1 m) => Show1 ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, MonadIO m) => MonadIO ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, MonadPlus m) => Alternative ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, MonadPlus m) => MonadPlus ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, MonadThrow m) => MonadThrow ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Applicative f, Applicative m, MonadCatch m) => MonadCatch ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

catch :: Exception e => FreeT f m a -> (e -> FreeT f m a) -> FreeT f m a Source #

( Applicative f, Applicative m, MonadCont m) => MonadCont ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

callCC :: ((a -> FreeT f m b) -> FreeT f m a) -> FreeT f m a Source #

( Apply f, Apply m, Monad m) => Apply ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

(<.>) :: FreeT f m (a -> b) -> FreeT f m a -> FreeT f m b Source #

(.>) :: FreeT f m a -> FreeT f m b -> FreeT f m b Source #

(<.) :: FreeT f m a -> FreeT f m b -> FreeT f m a Source #

liftF2 :: (a -> b -> c) -> FreeT f m a -> FreeT f m b -> FreeT f m c Source #

( Apply f, Apply m, Monad m) => Bind ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

(>>-) :: FreeT f m a -> (a -> FreeT f m b) -> FreeT f m b Source #

join :: FreeT f m ( FreeT f m a) -> FreeT f m a Source #

( Eq1 f, Eq1 m, Eq a) => Eq ( FreeT f m a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Ord1 f, Ord1 m, Ord a) => Ord ( FreeT f m a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Read1 f, Read1 m, Read a) => Read ( FreeT f m a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

( Show1 f, Show1 m, Show a) => Show ( FreeT f m a) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

The free monad

type Free f = FreeT f Identity Source #

The "free monad" for an applicative f .

free :: FreeF f a ( Free f a) -> Free f a Source #

Pushes a layer into a free monad value.

runFree :: Free f a -> FreeF f a ( Free f a) Source #

Evaluates the first layer out of a free monad value.

Operations

liftF :: ( Functor f, MonadFree f m) => f a -> m a Source #

A version of lift that can be used with just a Functor for f.

iterT :: ( Applicative f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a Source #

Given an applicative homomorphism from f (m a) to m a , tear down a free monad transformer using iteration.

iterTM :: ( Applicative f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a Source #

Given an applicative homomorphism from f (t m a) to t m a , tear down a free monad transformer using iteration over a transformer.

hoistFreeT :: ( Functor m, Applicative f) => ( forall a. m a -> n a) -> FreeT f m b -> FreeT f n b Source #

Lift a monad homomorphism from m to n into a monad homomorphism from FreeT f m to FreeT f n

hoistFreeT :: (Functor m, Applicative f) => (m ~> n) -> FreeT f m ~> FreeT f n

transFreeT :: ( Monad m, Applicative g) => ( forall a. f a -> g a) -> FreeT f m b -> FreeT g m b Source #

Lift an applicative homomorphism from f to g into a monad homomorphism from FreeT f m to FreeT g m

joinFreeT :: ( Monad m, Traversable f, Applicative f) => FreeT f m a -> m ( Free f a) Source #

Pull out and join m layers of FreeT f m a .

cutoff :: ( Applicative f, Applicative m, Monad m) => Integer -> FreeT f m a -> FreeT f m ( Maybe a) Source #

Cuts off a tree of computations at a given depth. If the depth is 0 or less, no computation nor monadic effects will take place.

Some examples ( n ≥ 0 ):

cutoff 0     _        ≡ return Nothing
cutoff (n+1) . returnreturn . Just
cutoff (n+1) . liftlift . liftM Just
cutoff (n+1) . wrapwrap . fmap (cutoff n)

Calling retract . cutoff n is always terminating, provided each of the steps in the iteration is terminating.

partialIterT :: Monad m => Integer -> ( forall a. f a -> m a) -> FreeT f m b -> FreeT f m b Source #

partialIterT n phi m interprets first n layers of m using phi . This is sort of the opposite for cutoff .

Some examples ( n ≥ 0 ):

partialIterT 0 _ m              ≡ m
partialIterT (n+1) phi . returnreturn
partialIterT (n+1) phi . liftlift
partialIterT (n+1) phi . wrapjoin . lift . phi

intersperseT :: ( Monad m, Applicative m, Applicative f) => f a -> FreeT f m b -> FreeT f m b Source #

intersperseT f m inserts a layer f between every two layers in m .

intersperseT f . returnreturn
intersperseT f . liftlift
intersperseT f . wrapwrap . fmap (iterTM (wrap . (<$ f) . wrap))

intercalateT :: ( Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b Source #

intercalateT f m inserts a layer f between every two layers in m and then retracts the result.

intercalateT f ≡ retractT . intersperseT f

retractT :: ( MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a Source #

Tear down a free monad transformer using Monad instance for t m .

Operations of free monad

retract :: Monad f => Free f a -> f a Source #

retract is the left inverse of liftF

retract . liftF = id

iter :: Applicative f => (f a -> a) -> Free f a -> a Source #

Given an applicative homomorphism from f to Identity , tear down a Free Monad using iteration.

iterM :: ( Applicative f, Monad m) => (f (m a) -> m a) -> Free f a -> m a Source #

Like iter for monadic values.

Free Monads With Class

class Monad m => MonadFree f m | m -> f where Source #

Monads provide substitution ( fmap ) and renormalization ( join ):

m >>= f = join (fmap f m)

A free Monad is one that does no work during the normalization step beyond simply grafting the two monadic values together.

[] is not a free Monad (in this sense) because join [[a]] smashes the lists flat.

On the other hand, consider:

data Tree a = Bin (Tree a) (Tree a) | Tip a
instance Monad Tree where
  return = Tip
  Tip a >>= f = f a
  Bin l r >>= f = Bin (l >>= f) (r >>= f)

This Monad is the free Monad of Pair:

data Pair a = Pair a a

And we could make an instance of MonadFree for it directly:

instance MonadFree Pair Tree where
   wrap (Pair l r) = Bin l r

Or we could choose to program with Free Pair instead of Tree and thereby avoid having to define our own Monad instance.

Moreover, Control.Monad.Free.Church provides a MonadFree instance that can improve the asymptotic complexity of code that constructs free monads by effectively reassociating the use of ( >>= ). You may also want to take a look at the kan-extensions package ( http://hackage.haskell.org/package/kan-extensions ).

See Free for a more formal definition of the free Monad for a Functor .

Minimal complete definition

Nothing

Methods

wrap :: f (m a) -> m a Source #

Add a layer.

wrap (fmap f x) ≡ wrap (fmap return x) >>= f

default wrap :: (m ~ t n, MonadTrans t, MonadFree f n, Functor f) => f (m a) -> m a Source #

Instances

Instances details
( Functor f, MonadFree f m) => MonadFree f ( ListT m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( ListT m a) -> ListT m a Source #

( Functor f, MonadFree f m) => MonadFree f ( MaybeT m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( MaybeT m a) -> MaybeT m a Source #

Applicative f => MonadFree f ( Free f) Source #
Instance details

Defined in Control.Monad.Free.Ap

Methods

wrap :: f ( Free f a) -> Free f a Source #

Functor f => MonadFree f ( Free f) Source #
Instance details

Defined in Control.Monad.Free

Methods

wrap :: f ( Free f a) -> Free f a Source #

Functor f => MonadFree f ( F f) Source #
Instance details

Defined in Control.Monad.Free.Church

Methods

wrap :: f ( F f a) -> F f a Source #

Monad m => MonadFree Identity ( IterT m) Source #
Instance details

Defined in Control.Monad.Trans.Iter

( Functor f, MonadFree f m, Error e) => MonadFree f ( ErrorT e m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( ErrorT e m a) -> ErrorT e m a Source #

( Functor f, MonadFree f m) => MonadFree f ( ExceptT e m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( ExceptT e m a) -> ExceptT e m a Source #

( Functor f, MonadFree f m) => MonadFree f ( IdentityT m) Source #
Instance details

Defined in Control.Monad.Free.Class

( Functor f, MonadFree f m, Monoid w) => MonadFree f ( WriterT w m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( WriterT w m a) -> WriterT w m a Source #

( Functor f, MonadFree f m, Monoid w) => MonadFree f ( WriterT w m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( WriterT w m a) -> WriterT w m a Source #

( Functor f, MonadFree f m) => MonadFree f ( StateT s m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( StateT s m a) -> StateT s m a Source #

( Functor f, MonadFree f m) => MonadFree f ( StateT s m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( StateT s m a) -> StateT s m a Source #

( Functor f, MonadFree f m) => MonadFree f ( ReaderT e m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( ReaderT e m a) -> ReaderT e m a Source #

( Applicative f, Applicative m, Monad m) => MonadFree f ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

wrap :: f ( FreeT f m a) -> FreeT f m a Source #

( Functor f, Monad m) => MonadFree f ( FreeT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free

Methods

wrap :: f ( FreeT f m a) -> FreeT f m a Source #

MonadFree f ( FT f m) Source #
Instance details

Defined in Control.Monad.Trans.Free.Church

Methods

wrap :: f ( FT f m a) -> FT f m a Source #

( Functor f, MonadFree f m) => MonadFree f ( ContT r m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( ContT r m a) -> ContT r m a Source #

( Functor f, MonadFree f m, Monoid w) => MonadFree f ( RWST r w s m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( RWST r w s m a) -> RWST r w s m a Source #

( Functor f, MonadFree f m, Monoid w) => MonadFree f ( RWST r w s m) Source #
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f ( RWST r w s m a) -> RWST r w s m a Source #